PRODUCCIÓN

M. en C. Elizabeth Argüelles Hernández

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido Alumno	<u>Alumno</u>
Instituto Mexicano de Tecnología del Agua	Investigación	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	01-sep-19	01-ago-22	Jiutepec, Morelos	Investigación: Tratamiento de un efluente industrial de giro alimenticio por un sistema bio-electro-Fenton acoplando una celda electroquímica microbiana (CEM) para la producción de bio-hidrógeno, del Doctorado en Ciencias y Tecnología del Agua	
Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla	Trabajo Práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	09-abr-18	09-oct-18	Puebla, México	Implementación de la ISO/IEC 17025: 2017 en los laboratorios de investigación aplicada del Centro Universitario de Vinculación y Transferencia de Tecnología.	
Comisión Naciona Forestal, Gerencia Estatal en Puebla	Trabajo Práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales		10-may-18	Puebla, México	Análisis para la viabillidad del estacionamiento de una Unidad Productora de Germoplasma Forestal como Huerto Semillero Asexual (UPGF-HSA) en el Ejido Peñuelas Puebto Nuevo para la obtención de la certificación bajo la NMX- AA-169-SCFI-2016	
Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional	Colaboración en reporte técnico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	14-may-18	18-abr-18	Tlaxcala, México	Tesis: Prototipo de celda combustible microbiana para generación de energía eléctrica y tratamiento de agua residual.	
Benemérita Universidad Autónoma de Puebla	Trabajo Práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	09-abr-18	09-oct-18	Puebla, México	Informe técnico Actualizar e implementar la Norma ISO/IEC 17025:2017 en laboratorios de Investigación aplicada	
Comisión Nacional Forestal - CONAFOR	Trabajo práctico	Convenio	Gubernamental	Manejo Sustentable de Recursos Naturales	01-may-16	01-may-18	Puebla, Mexico	Informe Técnico de analisis para la viabilidad y establecimiento de una unidad productora de Germoplasma forestal como huerta asexual (UPGF-HSA) en el ejido Pañuelas Pueblo Nuevo para la obtención de certificación bajo la NMX-AA-169-SCFI-2016	
Centro de Investigación en Biotecnología Aplicada Unidad Tlaxcala - CIBA	Estancia de investigación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	15-ene-16	15-ene-18	Tlaxcala, México	Proyecto de Investicación Informe Técnico	
Centro de Investigación y Desarrollo Tecnológico en Electroquímica	Artículo	Colaboración	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	43356	43721	Queretaro,, México	Modelación y simulación usando redes neuronales dinámicas de un reactor bioelectroquímico para la producción de energía.	
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico		Educativo	Manejo Sustentable de Recursos Naturales		01-ene-18	Puebla, México	Harina de pescado, una solución factible para los residuos orgánicos generados en la pesca de Puerto Peñasco, Sonora.	Ixtoc Marlo Rivera Núñez
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		27-feb-18	Puebla, México	Caracterización molecular de grupos microbianos productores de biogás en un biodigestor con sangre como sustrato y estiércol bovino como inóculo.	Mónica Domínguez García

PRODUCCIÓN

DRA. ZAIDA NELLY JUÁREZ

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
Department of Medicine, Faculty of Medicine, University of British Columbia	Colaboración en artículo	Colaboración	Farrmacéutico y agrolimentario	Manejo Sustentable de Recursos Naturales	01-ene-19	20-ene-20	Vancouver, Canadá	Antimicrobial, anti-inflammatory, and cytotoxic activities of Lygodium venustum (Lygodiaceae)	
Departamento de Ciencias Biológicas, Universidad de las Américas Puebla	Colaboración en artículo	Colaboración	Farrmacéutico y agrolimentario	Manejo Sustentable de Recursos Naturales	01-ene-19	20-ene-20	San Andrés Cholula, Puebla	Antimicrobial, anti-inflammatory, and cytotoxic activities of Lygodium venustum (Lygodiaceae)	
Universidad de la Cañada	Ponencia	Gestión directa	Farrmacéutico y agrolimentario	Manejo Sustentable de Recursos Naturales	26-nov-19	26-nov-19	Teotitlán de Flores Magón, Oaxaca	Ponente: Evaluación antimicrobiana y tóxica de extractos vegetales, en el 2do Encuentro Multidisciplinario "Perspectivas de la biotecnología en la salud, en los sectores farmacéuticos y agroalimentarios del estado de Oaxaca y Región Cañada.	
Centro de Investigaciones en Ciencias Biológicas de la Universidad Autónoma de Tlaxcala	Conferencia	Gestión directa	Educativo	Manejo Sustentable de Recursos Naturales	29-sep-19	30-sep-19	Ixtacuixtla, Tlaxcala	Evaluación de actividades biológicas de plantas con potencial uso sustentable.	
Universidad Católica San Antonio de Murcia (UCAM)	Ponente en Curso	Gestión directa	Educativo	Manejo Sustentable de Recursos Naturales	24-jun-19	19-jul-19	Murcia, España	Módulo de Biorremediación en el Curso de Diplomado Universitario en Biotecnología de la Universidad Católica San antonio de Murcia	
Department of Medicine, Faculty of Medicine, University of British Columbia	Colaboración en artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-oct-17	08-oct-18	Vancouver, Canadá	Natural Antispasmodics: Source, Stereochemical Configuration, and Biological Activity	
Departamento de Ciencias Biológicas, Universidad de las Américas Puebla	Colaboración en artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-oct-17	08-oct-18	Vancouver, Canadá	Natural Antispasmodics: Source, Stereochemical Configuration, and Biological Activity	
Estado de Quintana Roo	Trabajo práctico	Gestión Directa	Gubernamental	Manejo Sustentable de Recursos Naturales	01-ago-18	30-ago-19	Quintana Roo, México	Evaluación del sargazo (Sargassum fluitans) procedente de la Costa Maya de Quintana Roo como una alternativa sustentable en el áreas agroalimentaria.	Ana Alejandra Martínez Flores
Estado de Puebla	Trabajo práctico	Gestión Directa	Gubernamental	Manejo Sustentable de Recursos Naturales	01-jun-17	11-jun-19	Puebla, México	Evaluación de extractos de Buddleja cordata como propuesta de pesticida	Nely Paola Andrade Ocampo
CECANI Latinoamerica	Participación	Gestión Directa	Organización de la Sociedad Civil	Manejo Sustentable de Recursos Naturales	21-feb-20	22-feb-20	Puebla, México	Taller: Creaciones de asociaciones civiles y proyectos sociales 2020	
Enago Academy	Participación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	01-mar-20	02-mar-20	Puebla, México	Workshop on academic writting and publishing	
Benemérita Universidad Autónoma de Puebla	Trabajo práctico	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	27-may-19	28-may-19	Puebla, México	Tesis: "Aislamiento, caracterización y actividad bioógica de compuestos de la planta Lopezía racemosa"	Enrique Guevara Barragán

PRODUCCIÓN

DRA. MARÍA ROSA MAIMONE

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido Alumno	<u>Alumno</u>
Secretaria de Desarrollo Rural, Sustetnabilidad y Ordenamiento Territorial - Puebla	Desarrollo de trabajo de investigación	Convenio	Gubernamental	Manejo Sustentable de Recursos Naturales	24-ago-17	13-dic-18	Puebla, México	Proyecto de Investicación Informe Técnico sobre identificación de los tipos de agaves silvestres existentes, así como los usos y aprovechamientos sustentables en San Diego de la Mesa Tochimiltzingo, ANP "Sierra de Tentzo"	
Instituto Politecnico Nacional - IPN	Estancia de Investigación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	28-ago-17	04-dic-18	Ciudad de México, México	Proyecto de Investigación Informe técnico	
Benemérita Universidad Autónoma de Puebla	Trabajo Práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	09-abr-18	10-oct-18	Puebla, México	Implementación de la ISO/IEC 17025: 2017 en los laboratorios de investigación aplicada del Centro Universitario de Vinculación y Transferencia de Tecnología.	
Benemérita Universidad Autónoma de Puebla	Trabajo Práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	09-abr-18	09-oct-18	Puebla, México	Informe técnico Actualizar e implementar la Norma ISO/IEC 17025:2017 en laboratorios de Investigación aplicada	
Servicio Forestal Zenzontepetl	Estancia de Investigación	Gestión Directa	Organización	Manejo Sustentable de Recursos Naturales	21-ago-16	21-ago-18	Puebla, México	Informe de trabajo de campo, tesis Desarrollo de conocimiento en materia de servicios ambientales y biodiversidad en la comunidad de Santa Ana Teloxtoc	
Comisión Nacional Forestal - CONAFOR	Trabajo práctico	Gestión Directa	Gubernamental	Manejo Sustentable de Recursos Naturales	01-may-16	01-may-18	Puebla, México	Informe Técnico de analisis para la viabilidad y establecimiento de una unidad productora de Germoplasma forestal como huerta asexual (UPGF- HSA) en el ejido Pañuelas Pueblo Nuevo para la obtención de certificación bajo la NMX-AA-169-SCFI-2016	
Centro de Innovación en Agricultura Protegida CITAP en Atlixco, UPAEP	Trabajo práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	06-ene-17	01-ene-18	Puebla, México	Informe técnico Propuesta de Edificación sustentable en la posta zootécnica y el centro de innovación tecnológica en agricultura protegida CITAP	

PRODUCCIÓN

DRA. MARÍA ROSA MAIMONE

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
Zenzontepetl, Servicio Forestal	Trabajo Práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	09-may-18	9/11/2018	Acatzingo de Hidalgo, Puebla	Desarrollo del conocimiento en materia de servicios ambientales y biodiversidad en la comunidad de Santa Ana Tioxtoc, Municipio de Tehuacán, Reserva de la Biosfera Tehuacán-Cuicatlan.	Hugo Hermilo Medina Román
Instituto Carlos Pereyra de Puebla A.C.	Ponencia	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	08-feb-19	08-feb-19	Puebla, México	Ponente en el marco de la Feria Universitaria	
Instituto Carlos Pereyra de Puebla A.C.	Ponencia	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	11-abr-19	11-abr-19	Puebla, México	Ponente en el Expo Ciencia de Tecnologías en la Educación	
Universidad Politécnica de Tlaxcala	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-nov-18	13-nov-19	Tlaxcala, México	Modelo de evaluación de desarrollo sustentable para la industria calera	Genoveva Rosano Ortega1, Jorge Carro Suárez2, Carlos Vega Lebrún1, Sonia Martínez Gallegos 3*, Francisco Sánchez Ruíz1, Rosa Maimone1, Iyali Romero Pérez1
Universidad Popular Autónoma de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		01-ago-18	Puebla, México	Evaluación del impacto negativo que genera el relleno sanitario del municipio de Carmen, Campeche, en el subsuelo, mediante un análisis sedimentológico	Areli Machorro Román
Universidad Popular Autónoma de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		01-jun-19	Puebla, México	Tesis: Análisis hacia una eficiencia urbana, aplicando la certificación Leed, para ciudades mexicanas. Caso: Barrio de Santiago, Ciudad de Puebla.	Arq. Gabriela Roldán Bedolla
Universidad Popular Autónoma de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		01-ene-18	Puebla, México	Propuesta para la Creación de Tribunales en Materia Ambiental en México	Alberto Rubén García Moreno
Universidad Popular Autónoma de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	01-mar-19	10-mar-20	Puebla, México	Inventario de Emisiones de Gases de Efecto Invernadero y aplicación de la norma ISO 14064-I, Caaso de Estudio UPAEP	Iván Andrés García Herrera

PRODUCCIÓN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
Instituto México de Puebla A.C	Colaboración en reporte técnico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	18-oct-17	02-ene-19	Puebla, México	Tesis: Elaboración de un Plan de Manejo Integral de Recursos Hidricos para el Instituto México de Puebla (plantel San Pedro)	Ingrid Lizeth Mejía Gil
Red Mexicana de Cuencas	Ponencia en Congreso	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	29-oct-19	31-oct-19	Ciudad de México, México	Ponencia: "Oreochromis niloticus como bioindicador de la presa Valsequillo, cuenca del Alto Atoyac, Puebla - México: microplásticos y elementos traza un riesgo para la salud en 1 er Congreso Latinoamericano y V Nacional de Manejo de Cuencas Hidrográficas	
AOGS 15TH Annual Meeting	Ponencia en Congreso	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	03-jun-18	08-jun-18	Honolulu, Hawaii	HS13-A035 Provenance and Destination of Pollutants in the Atoyac River, Tlaxcala, Puebla, Mexico, Central America	
Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del IPN	Colaboración trabajo práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	01-ene-18	En curso	Ciudad de México, México	Tesis "Diseños de Espacios Territoriales de la subcuenca del rio Zahuapan, Tlaxcala: Una propuesta para la Gestión Integral del Recurso Hidrico"	
CONCYTEP	Participación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	01-sep-17	EN CURSO	Puebla, México	Redes de colaboración en Feria Nacional de Ciencias e Ingenierías	
Benemérita Universidad Autónoma de Puebla	Estancia de Investigación	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	01-ago-17	31-dic-19	Puebla, México	Tesis de Maestría "Pruebas de fertilidad con Phaseolus Vulgaris L en suelos agricolas contaminados con hidrocarburos y tratados por sorción-oxidación avanzada utilizando biosólido como enriquecedor"	
InstitutoTecnológico de Toluca	Estancia de Investigación	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	01-ago-17	31-dic-19	Puebla, México	Tesis de Maestría "Pruebas de fertilidad con Phaseolus Vulgaris L en suelos agrícolas contaminados con hidrocarburos y tratados por sorción-oxidación avanzada utilizando biosólido como enriquecedor"	
Universidad de Valladolid	Estancia académica	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	01-jul-18	31-dic-18	Valladolid, España	Reporte técnico en el ámbito de recursos hídricos y tratamiento de aguas	
PROFEPA-Delegación Puebla	Estancia de investigación	Convenio	Gubermanental	Manejo Sustentable de Recursos Naturales	21-ago-17	10-dic-18	Puebla, México	Tesis La necesidad de crear tribunales en materia ambiental en México	
Instituto Politécnico Nacional - IPN	Estancia de Investigación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	28-ago-17	04-dic-18	Ciudad de México, México	Proyecto de Investigación Informe técnico	
Instituto México de Puebla A.C	Colaboración trabajo práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	01-oct-17	01-oct-18	Puebla, México	Informe de trabajo de campo, "Plan de Manejo Integral de los recusos Hidricos"	

PRODUCCIÓN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
TEAMB Alternativa Aplicada Ambiental S.A de C.V	Pasantía	Gestión Directa	Empresarial	Manejo Sustentable de Recursos Naturales	01-ene-18	01-jul-18	Puebla, México	Informe técnico "Plan de Manejo Integral de los recusos Hidricos"	
Instituto Méxicano de Tecnología del agua IMTA	Estancia Postdoctoral	Convenio	Gubernamental/ Educativo	Manejo Sustentable de Recursos Naturales	11-jun-17	25-may-18	Morelos, México	Infotme de estancia y tesis Identificacion y recuperación de aresénico en lodos provenientes de la potabilización de agua mediante técnicas electroquímicas	
Tecnosilicatos S.A de C.V	Trabajo Práctico	Convenio	Empresarial	Manejo Sustentable de Recursos Naturales	16/07/2016	03-feb-18	Puebla, México	Reporte técnico Diseño de un modelo de monitoreo de la generación de biogás en un relleno sanitario, mediante un estudio técnicoeconómico-ambiental, para su aprovechamiento como fuente energética. Caso de estudio: Re	
Universidade do Passo Fundo	Estancia de investigación	Covenio	Educativo	Manejo Sustentable de Recursos Naturales	23-oct-17	25-dic-17	Passo Fundo, Brasil	Informe Técnico	
Instituto Politecnico Nacional - IPN	Estancia de Investigación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	15-ene-16	04-dic-17	Ciudad de México, México	Proyecto de Investigación Informe técnico	
Instiuto Mexicano de Tecnología del Agua - IMTA	Estancia de Investigación	Covenio	Gubernamental	Manejo Sustentable de Recursos Naturales	08-ene-16	30-nov-17	Morelos, México	Informe de estancia y tesis estudio del efecto de ozonación en la estabilización del CN presente en relaves de la industria minera de Au y Ag	
Istanbul Technical University	Ponencia	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	01-nov-17	04-nov-17	Estambul, Turquia	Ponencia Characterization of a Basin Through its Environmental Signature to Identify Possible Sources of Pollution; High Atoyac Basin, Puebla-Tlaxcalla, Mexic en 8th Atmospheric Sciences Symposium	
Consejo Nacional de Ciencia y Tecnología	Participación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	30-oct-17	01-nov-17	Puebla, México	Proyecto de investigación en Feria Nacional de Ciencias e Ingenierías	
Universidad Autónoma del Estado de Hidalgo	Ponencia	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	11-oct-17	13-oct-17	Hidalgo, México	Ponencia Incorporación de los Objetivos de desarrollo sostenible en la estrategia empresarial como ruta hacia la creación de valor y su efecto en la percepción de las comunidades locales en 5° Congreso Internacional de Investigación en Ciencias Económico Administrativas	
Universidad Autónoma del Carmen	Estancia de Investigación	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	01-jun-17	30-jul-17	Campeche, México	Informe de trabajo de campo, tesis	

PRODUCCIÓN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
International Water Resources Association	Presentación de Poster	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	29-may-17	03-jun-17	Cancún Quintana Roo, México	Poster Identification Arsenic (V) by cyclic voltammetry and recovery of Arsenic by electrodeposition, en XVI World Water Congress on 'Bridging Science and Policy	
Universidad Michoacana de San Nicolas Hidalgo	Presentación de Poster	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	24-may-17	26-may-17	Michoacan , México	Certel Treatment of petroleum-hydrocarbon contaminated soil through sorption and advanced oxidation processes, en 5 th WA Mexico Young Water Professionals Conference	
Universidad Michoacana de San Nicolas Hidalgo	Presentación de Poster	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	24-may-17	26-may-17	Puebla, México	Cartel Impacto ambiental de los residuos peligrosos generados a partir de la demanda quimica de oxigeno en Puebla, en en 5 th IWA Mexico Young Water Professionals Conference	
Universidat Rovira i Virgili	Estancia de investigación	Covenio	Educativo	Innovación tecnológica y de Sustentabilidad Energética	31/01/2017	06-may-17	Tarragona, España	Reporte técnico "Interconexion de Convertidores de Potencia para Nano-Redes de Corriente Continua en Aplicaciones Residenciales" y Publicación de artículo en recista científica	
Instituto Mexicano de Tecnología del Agua IMTA	Estancia de investigación	Convenio	Gubernamental/ Educativo	Manejo Sustentable de Recursos Naturales	06-ene-16	30-nov-16	Morelos, México	Informe de Estancia y tesis "Recuperación de Arsénico de Aguas de Residuo mediante Técnicas Electroquímicas"	
Universidad Autonóma de Nuevo León	Ponecia en congreso	Gestión directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	09-nov-16	11-nov-16	Nuevo León, México	Ponenecia en el III Congreso de Investigadoras de Iberoamérica con el tema Determinación de As(V) mediante técnicas electroquímicas	
Grupo Calidra Química Natural	Trabajo Práctico	Convenio	Empresarial	Innovación tecnológica y de Sustentabilidad Energética	19-jul-15	18-oct-16	Puebla, México	Proyecto de Investigación Informe técnico del trabajo práctico "Diagnóstico de desarrollo sustentable en una planta Calera"	
Centro de Estudios Espinosa Yglesias	Serie Televisiva	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	12-sep-16	12-sep-16	México D.F, México	Informe para divulgación científica en la Serie Televisiva : "En contexto"	
Benemerito Instituto Normal del Estado	Instructora de curso- taller	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	16-mar-16	16-mar-16	Puebla, México	Curso-Taller: Sustentabilidad Medio Ambiente	
Fundación MAPFRE	Firma Convenio	Gestión Directa	Educativo Organizaciones	Manejo Sustentable de Recursos Naturales	01-feb-16	07-feb-16	Madrid, España	Red de Colaboración Proyecto: Promoción de alimentos funcionales endémicos de la región puebla-tlaxcala como una alternativa para combatir la obesidad y el sobrepeso	
Instituto de Transculturación Ambiental y Energías Renovables ITAER	Trabajo práctico	Convenio	Organizaciones ambientales	Innovación Tecnológica y de Sustentabilidad Energética	14-jul-15	14-ene-16	Puebla, México	Informe Técnico sobre Diagnostico Comunitario sobre situación ambiental	

PRODUCCIÓN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
Universidad intercontinental	Evento Académico	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	10-sep-15	10-sep-15	Estado de México, México	Difución de libro La Sustentabilidad en México en evento de la presentación de la Enciclica laudato Si': "Diálogos sobre Ética ambiental y ecológica"	
Benemérita Universidad Autónoma de Puebla (BUAP) y la Academia Nacional de Ciencias Ambientales.	Ponente de Congreso	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	03-jun-15	05-jun-15	Puebla, México	Ponencia SÍNTESIS Y ANÁLISIS DE COMPRIMIDOS DE TIO2-Au COMO FOTOCATALZADOR EN LA DEGRADACIÓN DE COLORANTES, en el XIV Congreso Internacional y XX Congreso Nacional de Ciencias Ambientales	
Universidad Veracruzana y Academia Journals	Ponencia en Congreso	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	27-may-15	29-may-15	Veracruz, México	Ponencia y publicación en memorias: indicadores de sustentabilidad para la industria de recubrimientos cerámicos en México, en Congreso Internacional de Investigación de Academia Journals en Ciencias y Sustentabilidad	
International Water Association (IWA)	Presentación de Cartel	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	27-abr-15	29-abr-15	Guanajuato, México	Cartel "Sustainable treatment of animal blood in abattoirs", en el 4th IWA México Young Water Professionals Conference 2015	
International Water Association (IWA)	Presentación de Cartel	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	27-abr-15	29-abr-15	Guanajuato, México	Cartel: "Effect of ozonation for Cyanide Oxidation in Taillings of Gold and Silver Mining Industries", en el 4th IWA México Young Water Professionals Conference 2015	
Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México y la Universidad de Guadalajara,	Ponencia en Congreso	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	29-oct-14	31-oct-14	Jalisco, México	Ponencia Determinación de Parámetros de Diseño para Sintesis de Nanopartículas Matálicas por Biorreducción, en el SOMI XXIX Congreso de Instrumentación	
Universidad Autónoma Metropolitana Azcapotzalco	Evento Académico	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	22-oct-14	24-oct-14	Guanajuato, México	Ponencia de artículo La Renovación Curricular desde el Diagnóstico Social Participativo: Una Experiencia Académica de la Maestría en Mecatrónica de UPAEP, en la X Semana Nacional de Ingeniería Electrónic.	
Sociedad Mexicana de Materiales A.C.	Congreso	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	17-ago-14	21-ago-14	Quintana Roo, México	Red de colaboración en el XXIII International Materials Research Congress	
Instituto Tecnológico de Toluca	Artículo	Colaboración	Educativo	Estado de México	01-sep-18	01-sep-19		Hydrocarbon removal from diesel-contaminated soil through reused activated carbon adsortion.	
Universidad Politécnica de Tlaxcala	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-nov-18	13-nov-19	Tlaxcala, México	Modelo de evaluación de desarrollo sustentable para la industria calera	Genoveva Rosano Ortega1, Jorge Carro Suárez 2, Carlos Vega Lebrún1, Sonia Martínez Gallegos 3*, Francisco Sánchez Ruíz1, Rosa Maimone1, Iyali Romero Pérez1

PRODUCCIÓN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
Academia Mexicana de Investigación y Docencia en Ingeniería Química A.C.	Conferencia	Gestión directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	43592	43595	Huatulco, Oaxaca	Simulación cuántica molecular del Bisfenol-A (BPA) en solución acuosa y su efecto en el ambiente.	
Centro de Investigación y Desarrollo Tecnológico en Electroquímica	Artículo	Colaboración	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	43356	43721	Queretaro,, México	Modelación y simulación usando redes neuronales dinámicas de un reactor bioelectroquímico para la producción de energía.	
Universidad Politécnica de Tlaxcala,	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	21-jul-17	19-ago-19	Tlaxcala, México	Modelo de certificación para la dimensión institucional de desarrollo sustentable	
Universidad Autónoma de Tlaxcala	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	21-jul-17	19-ago-19	Tlaxcala, México	Modelo de certificación para la dimensión institucional de desarrollo sustentable	
Instituto Mexicano de Tecnología del Agua;	Artículo	Colaboración	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	20-feb-19	26-ago-19	Ciudad de México	Precipitation of Ag, Hg and Cr for recycling derived from hazardous liquid wastes	Diana Pitalúa Sánchez
Instituto Tecnológico de Toluca;	Artículo	Colaboración	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	20-feb-19	26-ago-19	Ciudad de México	Precipitation of Ag, Hg and Cr for recycling derived from hazardous liquid wastes	
Benemérita Universidad Autónoma de Puebla;	Artículo	Colaboración	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	20-feb-19	26-ago-19	Ciudad de México	Precipitation of Ag, Hg and Cr for recycling derived from hazardous liquid wastes	
Fundación Produce	Patente	Convenio	Mezcalero	Innovación Tecnológica y de Sustentabilidad Energética	13-may-15	28-oct-19	Ciudad de México	Producción de una bebida no láctea y no alcohólica elaborada a base de jugo de agave salmiana adicionada con probióticos	
Instituto Mexicano de Tecnología del Agua	Patente	Convenio	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	01-jul-19	en curso	Ciudad de México	Método de tratamiento de relaves mineros	
Instituto Tecnológico de Toluca	Patente en registro	Convenio	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	19-dic-18	en curso	Toluca, Estado de México	Proceso de remediación de suelos contaminados con hidrocarburos	

PRODUCCIÓN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido Alumno	<u>Alumno</u>
					TRABAJOS PRÁ	ACTICOS			
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de los Recursos Naturales		01-abr-18	Puebla, México	Pruebas de biodegradabilidad de relaves mineros producto de la cianuración en la extracción de Au y Ag	Karla Itzel Ortiz Sayavedra / Acela Tejeda Gil
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética		08-mar-19	Puebla, México	Design and production of synthesized chromium nanoparticles by means of bioreduction using water hyacinth Eichhornia crassipes	Angela Abarca Pérez
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de los Recursos Naturales		30-ago-19	Puebla, México	Precipitación de Ag, Hg y Cr para el reciclaje derivado de residuos líquidos peligrosos	Diana Pitalua Sánchez
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de los Recursos Naturales		2019	Puebla, México	Impacto Ambiental de las Vinazas en el Estado de Puebla	Lisbeth Ascención Rojas
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética		sep-2019	Puebla, México	Sintesis y caracterización de nanopartículas de óxido de hierro Fe3O4 con recubrimiento de L-cisteína para mejorar la producción de metano en biodigestores	Omar Zendejas Martínez
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		01-ago-18	Puebla, México	Evaluación del impacto negativo que genera el relleno sanitario del municipio de Carmen, Campeche, en el subsuelo, mediante un análisis sedimentológico	Areli Machorro Román
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		01-ene-18	Puebla, México	Propuesta para la Creación de Tribunales en Materia Ambiental en México	Alberto Rubén García Moreno
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		31-ene-18	Puebla, México	Análisis de la produccion de gas metano en un biodigestor anaeróbico para la depuración de sangre animal	Daniel Antonio Aguilar Ruíz

PRODUCCIÓN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	<u>Alumno</u>
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		01-ene-18	Puebla, México	Harina de pescado, una solución factible para los residuos orgánicos generados en la pesca de Puerto Peñasco, Sonora.	lxtoc Marlo Rivera Núñez
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		25-may-18	Puebla, México	Dimensiones de sustentabilidad en el proceso productivo de la extracción de agua miel del Agave Salmiana. Caso de estudio de Zacatlán, Puebla. México.	Luz Amparo Grisales Rivera
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		04-abr-18	Puebla, México	Estudio del efecto de ozonación y coagulación-floculación en la estabilización del cianuro presente en relaves de la industria mienra de Au y Ag.	Laura ISabel Carrillo Flores
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		27-feb-18	Puebla, México	Caracterización molecular de grupos microbianos productores de biogás en un biodigestor con sangre como sustrato y estiércol bovino como inóculo.	Mónica Domínguez García
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		16-nov-18	Puebla, México	Identificación de Arsénico III en aguas de rechazo y arsénico V en lodos provenientes del proceso de coagulación-floculación mediante técnicas electroquímicas.	Ma. del Carmen Palacios Díaz / Elsie Itzel Báez Escobar
Universidad Popular Autónoma del Estado de Puebla	Trabajos prácticos	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales		05-jul-19	Puebla, México	Efectividad de Helianthus annuus y tagetes erecta asociadas a Talaromyces helicus para remediar suelos agrícolas contaminados con diésel.	Guadalupe Merino Flores
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión directa	Educativo	Manejo Sustentable de Recursos Naturales		18-feb-20	Puebla, México	Tesis: Pruebas de fertilidad con Raphanus sativus L en suelos agrícolas contaminados con hidrocarburos, tratados por sorción / oxidación avanzada y utilizando biosólido como enriquecedor.	Alba Eugenia Da Silva Verónica
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión directa	Educativo			12-feb-18	Puebla, México	Estudio de Indicadores de Competitividad para la Industria Textil en Puebla	Silvia Lama Amezcua

PRODUCCIÓN

DRA. BEATRIZ PÉREZ ARMENDÁRIZ

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido Alumno	Alumno
Universidad de Jaén	Programa Internacional	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	01-mar-18	01-mar-23	Jaén, España	Programa Internacional Conjunto de Enseñanzas oficiales de Máster en Biotecnología y Biomedicina, Especialidad Biotecnología.	
Uninversidad Católica San Antonio de Murcia	Ponencia	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	25-jun-18	25-jul-18	Murcia	Ponente en Diplomado Universitario en Biotecnología	
CONACYT - Fondo Institucional del Fomento Regional para el Desarrollo Científico, Tecnológico y de Innovación	Colaboración	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	05-jul-19	05-jul-19	Ciudad de México	Evaluadora del Informe técnico del Proyecto 296353 "Impulso para el arranque del Consorcio de Innovación y Transferencia Tecnológica para el Desarrollo Agroalimentario del Estado de Aguscalientes"	
CONACYT - Fondo Institucional del Fomento Regional para el DesarrolloCientífico, Tecnológico y de Innovación	Colaboración	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	05-jul-19	05-jul-19	Ciudad de México	Evaluadora del Informe técnico 296369 "Operación de la Alianza estratégica para el desarrollo sustentable de la región Pacífico Sur (ADESUR) para el periodod 2018-2020"	
Red Temática Mexicana de Aprovechamiento Integral Sustentable y Biotecnología de los Agaves	Colaboración	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	06-nov-18	07-nov-18	Oaxaca, México	5ta Reunión Nacional AGARED en el marco del Plan de Trabajo AGARED 2018.	
Escuela Superior de Tlahuelilpan, Universidad Autónoma del Estado de Hidalgo	Ponencia	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	08-nov-18	08-nov-18	Tlahuelipan, Hidalgo	Ponencia: "Los procesos sustentables para generación de combustibles alternos" en el marco del IX Congreso Nacional y III Internacional de Adminitración "Retos y perspectivas para generación de combustibles alternos"	
Instituto Nacional de Astrofísica, Óptica y Electrónica, Univesridad Iberoamericana Puebla	Conferencia	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	13-jun-19	15-jun-19	Puebla, México	Conferencia "La innovación desde nuestros orígenes; el Pulque y su aplicación en Probióticos" en el X Congreso Nacional de Tecncología aplicada a Ciencias de la Salud.	
Centro de Investigaciones Biomédicas, Universidad Veraccruzana.	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-jun-17	01-jun-18	Veracruz, México	Daño genético y citotóxico provocado por plaguicidas en jornaleros que laboran en invernaderos en Atlixco, Puebla, México	Maritza Espinosa-Arreola1,3, Luis Daniel Ortega-Martínez2, Beatriz Pérez-Armendáriz2, Almudena del Pilar Marqués-donado1,4 y Ma. del Rocío Baños-Lara1,3
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-jun-17	01-jun-18	Ciudad de México	Daño genético y citotóxico provocado por plaguicidas en jornaleros que laboran en invernaderos en Atlixco, Puebla, México	
Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-jun-17	01-jun-18	Los Mochis, Sinaloa	Daño genético y citotóxico provocado por plaguicidas en jornaleros que laboran en invernaderos en Atlixco, Puebla, México	
Servicios de Salud del Estado de Puebla	Artículo	Colaboración	Sector: gobierno	Manejo Sustentable de Recursos Naturales	01-oct-17	20-oct-18	Puebla, México	Evaluación del daño genético y de los hábitos alimentarios en niños con normopeso y obesidad en edad escolar.	
Universidad Popular Autónoma del Estado de Puebla	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-may-18	30-may-19	Puebla, México	Cnocimiento etnobotánico sobre el uso de plantas medicinales en la Sierra Negra de Puebla, México.	Guadalupe Velázquez-Vázquez, Beatriz Pérez-Armendáriz, Luis Daniel Ortega-Martinez y Zaida Nelly-Juarez

PRODUCCIÓN

DRA. ESTEFANIA MARTÍNEZ TAVERA

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC		Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	Colaboración / Estudiantes que participan
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR Sinaloa), Instituto Politécnico Nacional	Colaboración en artículo	'Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	12-mar-18	12-mar-19	Guasave, Sinaloa, México	Detection, provenance and associated environmental risks of water qualility pollutants during anomaly events in river Atoyac, Central Mexico: A real-time monitoring approach.	A.G. Hernandez-Ramirez a, E. Martinez-Tavera b, *, P.F. Rodriguez- Espinosa a, J.A. Mendoza-Pérez c, J. Tabla-Hernandez a, D.C. Escobedo- Urías d, M.P. Jonathan a, S.B. Sujitha
Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional	Colaboración en artículo	'Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	12-mar-18	12-mar-19	Ciudad de México, México	Detection, provenance and associated environmental risks of water qualility pollutants during anomaly events in river Atoyac, Central Mexico: A real-time monitoring approach.	A.G. Hernandez-Ramirez a, E. Martinez-Tavera b, *, P.F. Rodríguez- Espinosa a, J.A. Mendoza-Pérez c, J. Tabla-Hernandez a, D.C. Escobedo- Urías d, M.P. Jonathan a, S.B. Sujitha
Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instittuto Politécnico Nacional	Colaboración en artículo	'Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	12-mar-18	12-mar-19	Ciudad de México, México	Detection, provenance and associated environmental risks of water qualility pollutants during anomaly events in river Atoyac, Central Mexico: A real-time monitoring approach.	A.G. Hernandez-Ramirez a, E. Martinez-Tavera b.*, P.F. Rodriguez- Espinosa a, J.A. Mendoza-Pérez c, J. Tabla-Hernandez a, D.C. Escobedo- Urías d, M.P. Jonathan a, S.B. Sujitha
Instituto Nacional de México y el Instituto Tecnológico superior de San Martín Texmelucan	Ponencia Magistral	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	27-nov-19	29-nov-19	San Martín Texmelucan, Puebla	Ponencia Magistral: Procedencia de Contaminantes y genotoxicidad de la cuenca del alto Atoyac, en el Congreso de Innovación Ambiental y el 6to Encuentro de Ingeniería Ambiental y Ciencias Ambientales.	
Red Temática Gestión de la Calidad del Agua y Disponibilidad del Agua del CONACYT	Ponencia Magistral	Gestión Directa	Gubernamental	Manejo Sustentable de Recursos Naturales	19-sep-19	20-sep-19	Tlaxcala de Xicohténcatl	Foro: El tratamiento de aguas residuales en México, retos y perspectivas	

DRA. ESTEFANIA MARTÍNEZ TAVERA

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	<u>Producto obtenido Alumno</u>	Colaboración / Estudiantes que participan
Instituto México de Puebla A.C	Colaboración en reporte técnico	Convenio	Empresarial	Manejo Sustentable de Recursos Naturales	18-oct-17	02-ene-19	Puebla, México	Tesis: Elaboración de un Plan de Manejo Integral de Recursos Hídricos para el Instituto México de Puebla (plantel San Pedro)	Ingrid Lizeth Mejfa Gil
Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del IPN	Trabajo práctico	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	30-jul-18	10-dic-19	Ciudad de México, México	Tesis: Estudio de microplásticos en peces de la presa Manuel Ávila Camacho (Valsequillo) Cuenca del Alto Atoyac, México.	Aidé Miroslava Duarte Moro
Red Mexicana de Cuencas	Ponencia en Congreso	Gestión Directa	Educativo	Manejo Sustentable de Recursos Naturales	29-oct-19	31-oct-19	Ciudad de México, México	Ponencia: "Oreochromis niloticus como bioindicador de la presa Valsequillo, cuenca del Alto Atoyac, Puebla - México: microplásticos y elementos traza un riesgo para la salud en 1er Congreso Latinoamericano y V Nacional de Manejo de Cuencas Hidrográficas	
Universitat Rovira I Virgili	Curso en Energías Renovables	Convenio	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	17-jun-19	11-jul-19	Tarragona, España	Curso en energías renovables (68 horas)	Aidé Miroslava Duarte Moro
Universitat Rovira I Virgili	Estancia académica	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	10-jun-19	22-nov-19	Tarragona, España	Análisis de la composición de microplásticos en ecosistemas costeros del mar Mediterráneo utilizando técnicas espectroscópicas: ATR-FTIR, FTIR.	Aidé Miroslava Duarte Moro
Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del IPN	Estancia de investigación	Convenio	Educativo	Manejo Sustentable de Recursos Naturales	30-jul-18	03-ago-18	Ciudad de México, México	Metodología para la determinación de microplásticos en materia orgánica	Aidé Miroslava Duarte Moro

PRODUCCION

DR. FRANCISCO JAVIER SÁNCHEZ

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido Alumno	<u>Colaboradores</u>
Universidad Popular Autónoma del Estado de Puebla	Reporte técnico	Gestión directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	01-02-2019	18/2/2020	Puebla, México	Tesis: Pruebas de fertilidad con Raphanus sativus L en suelos agrícolas contaminados con hidrocarburos, tratados por sorción / oxidación avanzada y utilizando biosólido como enriquecedor.	Alba Eugenia Da Silva Verónica
Universidad Popular Autónoma del Estado de Puebla	Reporte técnico	Gestión directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	01-ene-19	28-ene-20	Puebla, México	Tesis: Degradación de colorantes orgánicos de la familia índigo por medio de fotocatálisis.	Lillhian Arely Flores González
Universidad Popular Autónoma del Estado de Puebla	Reporte técnico	Gestión directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	01-02-18	12-feb-19	Puebla, México	Tesis: Producción de biogás mediante la impelmentación de medios de cultivo deficientes en azufre usando microalgas silvestres aisaldas del Estado de Puebla.	Camilo Andrés Ramírez Valladares
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	mar-2019	mar-2020	Puebla, México	Simulación y diseño de los álabes de un mini-aerogenerador con distintos materiales para analizar su rendimiento.	María Arantxa Arriaga Castro

PRODUCCIÓN

DR. JUAN FRANCISCO MÉNDEZ DÍAZ

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido	Colaboradores/ alumnos
Universitat Rovira i Virgili, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Escola Tècnica Superior d'Enginyeria, Campus Sescelades, Av. Països Catalans 26, 43007 Tarragona, Spain	Artículo	Colaboración	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	01-jun-2017	4-jun-2018	Tarragona España	HM/PWM Seamless Control of a Bidirectional Buck-Boost Converter for a Photovoltaic Application	
Academic Exchange Information Centre	Participación	Colaboración	Educativo	Innovación Tecnológica y de Sustentabilidad Energética	19-01-2020	20-01-2020	Suzhou, China	Miembro del Comité en la "5th International Conference on Materials, Mechatronics and Civil Engineering.	
Azul de México S.A. de C.V.	Trabajo práctico	Gestión Directa	Empresarial	Manejo Sustentable de Recursos Naturales	05-03-2018	en curso	Puebla, México	Diagnóstico y plan de acción jurídico ambiental jurídico ambiental de la Empresa Azul México S.A. de C.V.	Roberto Llaca Herrera

PRODUCCIÓN

DR. CARLOS VEGA LEBRÚN

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido Alumno	Colaboradores / alumnos
Universidad Politécnica de Tlaxcala	Artículo	Colaboración	Educativo	Manejo Sustentable de Recursos Naturales	01-nov-18	13-nov-19	Tlaxcala, México	Modelo de evaluación de desarrollo sustentable para la industria calera	Genoveva Rosano Ortega1, Jorge Carro Suárez2, Carlos Vega Lebrún1, Sonia Martínez Gallegos 3*, Francisco Sánchez Ruíz1, Rosa Maimone1, Iyali Romero Pérez1
Universidad Popular Autónoma del Estado de Puebla	Trabajo práctico	Gestión directa	Educativo	Innovación Tecnológica y de Sustentabilidad Energética		mar-2020	Puebla, México	Simulación y diseño de los álabes de un mini- aerogenerador con distintos materiales para analizar su rendimiento.	María Arantxa Arriaga Castro
Suministros, Consultoría y Proyectos S.A. de C.V. (SUCOPSA)	Trabajo práctico	Gestión Directa	Empresarial	Innovación Tecnologica y de Sustentabilidad Energética	25-oct-19	en curso	Puebla, México	"Evaluación de colas de destilado con base en vinaza como aditivo para un concreto filtrante".	Ma. del Socorro Negrete Venegas
Suministros, Consultoría y Proyectos S.A. de C.V. (SUCOPSA)	Trabajo práctico	Gestión Directa	Empresarial	Innovación Tecnologica y de Sustentabilidad Energética	25-oct-19	en curso	Puebla, México	Producción de etanol de tercera generación valorizando la vinaza y residuos sólidos urbanos y de manejo especial celulósicos.	Nathalia Montserrat Cuellar Milian
-	Trabajo práctico	Gestión Directa	Organización de la Sociedad Civil	Manejo sustentable de recursos naturales	26-11-2019	en curso	Oaxaca, México	Creación de una metodología integral de sustentabilidad para obtener un distintivo de producción sustentable en la industria del mexcal.	Uriel Esaú Martínez Climaco

PRODUCCIÓN

DRA. LUSMILA HERRERA PÉREZ

Vinculación y/o Movilidad con	Descripción de la Vinculación y/o Movilidad	Mecanismo utilizado:	Sector:	LGAC	Fecha de inicio de la Vinculación y/o Movilidad	Fecha de término de la Vinculación y/o Movilidad	Lugar	Producto obtenido Alumno	<u>Colaborador /</u> <u>alumno</u>
Colegio de Posgraduados, Campus Montecillo	Artículo	Colaboración	Organización de la Sociedad Civil	Manejo sustentable de recursos naturales	oct-17	oct-2018	Estado de México	Esquemas de contratos agrícolas para la producción de Agave tequilana Weber en la Región de Tequia, Jalisco.	
Colegio de Posgraduados Campus Puebla	Artículo	Colaboración	Organización de la Sociedad Civil	Manejo sustentable de recursos naturales	abr-17	25-abr-2018	Puebla, México	Peasant production strategies with Agave tequilana in the municipality of Tequila, Jalisco.	
Congreso Nacional de Tecnología y Biotecnología Agrícola	Participación en Congreso	Gestión Directa	Organización de la Sociedad Civil	Manejo sustentable de recursos naturales	25-mar-2020	27-mar-2020	Tepetitla de Lardizábal, Tlaxcala;	Prácticas agroecológicas en Agave Mezcalero en el Primer Congreso Nacional de Tecnología y Biotecnología Agrícola.	
	Trabajo práctico	Gestión Directa	Organización de la Sociedad Civil	Manejo sustentable de recursos naturales	26-11-2019	en curso	Oaxaca, México	Creación de una metodología integral de sustentabilidad para obtener un distintivo de producción sustentable en la industria del mexcal.	Uriel Esaú Martínez Climaco
IEXE Universidad	Curso	Gestión Directa	Educativo	Manejo sustentable de recursos naturales	25-jun-2019	01-jul-19	Puebla, México	Curso análisis costo beneficio	

MX/F/2020/02018

DIRECCIÓN DIVISIONAL DE PATENTES.

SUBDIRECCIÓN DIVISIONAL DE PROCESAMIENTO ADMINISTRATIVO DE PATENTES.

COORDINACIÓN DEPARTAMENTAL DE RECEPCIÓN Y CONTROL DE DOCUMENTOS.

EXPEDIENTE: MX/a/2020/003941

FOLIO DE RECEPCIÓN: MX/E/2020/020185

IDENTIFICADOR DE LA SOLICITUD: 27158

LUGAR, FECHA Y HORA DE RECEPCIÓN

DE LA SOLICITUD:

CIUDAD DE MÉXICO 17/04/2020 02:59:27

ACUSE DE RECIBO DE LA SOLICITUD DE:

Patente

SOLICITANTE(S)

UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA

REPRESENTANTE LEGAL:

Francisco Fernando Eugenio URRUTIA ALBISUA

DOCUMENTOS DE LA SOLICITUD:

DOCUMENTO	NOMBRE ARCHIVO	TAMAÑO	HOJA(S)
SOLICITUD	Solicitud_000027158_17_04_2020.pdf	434.97 KB	6
COMPROBANTE DE PAGO	Pago.pdf	24.32 KB	1
HOJA DE DESCUENTO	HOJA DE DESCUENTO.pdf	25.28 KB	1
CONSTANCIA RGP	RGP Eugenio Urrutia.pdf	103.09 KB	1
DESCRIPCION	DESCRIPCION FINAL VINAZA TETRAPAK UPAEP.pdf	95.54 KB	24
REIVINDICACION	REIVINDICACIONES FINAL VINAZA TETRAPAK UPAEP.pdf	46.65 KB	4
RESUMEN	RESUMEN FINAL VINAZA TETRAPAK UPAEP.pdf	6.8 KB	1
DIBUJOS	FIGURAS V1 TETRAPAK VINAZA.pdf	467.35 KB	2

TOTAL DE HOJAS: 40 (No se incluyen hoja(s) del acuse)

Bajo protesta de decir verdad declaró, que se encuentra en el supuesto con respecto al beneficio señalado en la Cuarta Disposición General de la Tarifa por los servicios que presta este Instituto, por lo que solicitó el 50% de descuento de la tarifa establecida, para los artículos que aplique dicho descuento. Se hace la presente declaración en cumplimiento de dicha disposición, según el acuerdo por el que se da a conocer la tarifa por los servicios que presta el Instituto Mexicano de la Propiedad Industrial, publicado en el Diario Oficial de la Federación con fecha 23 de agosto de 1995.

Los documentos adjuntos están sujetos al estudio correspondiente que el Instituto realice de conformidad con la Ley de la Propiedad Industrial y su Reglamento.

La presente solicitud se recibe en términos del Acuerdo por el que se establecen lineamientos en materia de servicios electrónicos del Instituto Mexicano de la Propiedad Industrial, en los trámites que se indican; por lo tanto, previo a su presentación, el usuario aceptó lo siguiente:

- I.- Que el trámite se efectúe, desde su inicio hasta su conclusión, a través de medios de comunicación electrónica;
- II.- Bajo protesta de decir verdad, que revisó en la vista previa la información capturada y los anexos a la solicitud y que éstos son correctos; así mismo que, una vez concluido el proceso, no podría editar o variar la información o sus anexos;
- III.- Bajo protesta de decir verdad, indicó que la información capturada es cierta;
- IV.- Consultar su tablero, al menos, los días quince y último de cada mes, o bien, el día hábil siguiente si alguno de éstos fuere inhábil y que, en caso de no hacerlo, la notificación se tendría por hecha el día hábil siguiente a los días quince y último de cada mes, y
- V.- Dar aviso por escrito, a través del correo electrónico <u>buzon@impi.gob.mx</u>, a la Dirección Divisional de Patentes, dentro de los tres días hábiles siguientes a aquel en que se vea imposibilitado, por causas imputables al Instituto, a consultar el tablero o abrir los archivos depositados en el mismo, en los días señalados en la fracción IV anterior.

A efecto de que los documentos presentados a través del Sistema de Patentes en Línea, produzcan los mismos efectos que los documentos firmados autógrafamente y tengan el mismo valor probatorio, manifiestó bajo protesta de decir verdad, que los documentos son copia íntegra e inalterada del documento impreso; que se encuentren digitalizados en formato PDF (Portable Document Format), y que los remitió de forma legible.

Asimismo, desde su registro en el Portal de Acceso a Servicios Electrónicos, manifestó reconocer como propia la CURP, la cual no podrá ser sustituida con posterioridad; reconoció como propia y válida la dirección de correo electrónico proporcionada y aceptó que en ella se le envíe cualquier comunicación relacionada con la cuenta; aceptó que el uso de la contraseña queda bajo su exclusiva responsabilidad y que deberá notificar oportunamente al Instituto, cualquier situación que pudiera implicar un uso indebido; reconoció como propia, veraz y auténtica la información que envíe a través del PASE o de los servicios electrónicos del Instituto, ya sea haciendo uso de su CURP y contraseña o, en su caso, su e-firma; aceptó que el uso de su CURP y contraseña o, en su caso, e-firma, por persona distinta quedará bajo su exclusiva responsabilidad y acepta como propia la información que ésta envíe o descargue a través del PASE o de los servicios electrónicos del Instituto; asumió cualquier tipo de responsabilidad derivada del mal uso que hagan de su CURP y contraseña o, en su caso, su e-firma; y reconoció que el simple uso de los servicios electrónicos del Instituto constituye la aceptación más amplia de las condiciones señaladas en el artículo 11 del Acuerdo por el que se establecen lineamientos en materia de servicios electrónicos del Instituto Mexicano de la Propiedad Industrial, en los trámites que se indican.

Cadena Original

JAVIER ARIZMENDI SHO|00001000000413547625|Servicio de Administración Tributaria|27158|MX/a/2020/003941| MX/E/2020/020185|17/04/2020 14:59:27|Documento_Firma_Electronica.pdf|1|2268.08 KB|ky9hVSAUZc/mab/sJPhuuN+oKU8=

Sello Digital

TnoqQYL/FLY8FqtKxmJjzeaxf1AGGQRGaxNo7wFHlsL69MjQj6yeYaojx95Zy0dS/9O0KQV9ZdCYb866rNWzqQd0vF1z9kCnvF UyHvG2GQhf9b5bczFf0lcqXBmeJlHdkRZxrGHlpIE8Uj9NgP0xzqs
+hjME0VxnN36+cjL3fwxznBbjkrTPE33+W/Qm8sgpzalNPdCTTKBSgFcNbDHE4Q5Bg0FvE7NBZYwlsVcKofkLmdxkttSFsUZr2b

rhy9pQf5DXNFPEBgnFHgUem7IPNao0j8F+c3bZQMgmTVKpNea0qcM5k/hHjtr7fI/PJ0l98YjTTypd9X3oMlwxJWnzvw=

Para verificar la autenticidad del presente documento, podrá ingresar a la página electrónica https://validadocumento.impi.gob.mx/, escaneando el código QR que aparece a un costado de la e.firma del Servidor Público que signó el mismo, indicando, en su caso, el tipo de documento que pretende validar solicitud, acuse, oficio o promoción); lo anterior con fundamento en lo dispuesto por los artículos 1° fracción III, 2° fracciones II y V, 25, 26 BIS y 26 TER del Acuerdo por el que se Establecen los Lineamientos para el uso del Portal de Acceso a Servicios Electrónicos (PASE) del Instituto Mexicano de la Propiedad Industrial, en los Trámites que se Indican; en caso de no contar con lector QR o en su defecto el Código no pueda ser leído por su dispositivo, puede digitar en la página antes referida el siguiente Código :AS6YZmZF4DcmOcIJHNk4LMzok4I=

Instituto Mexicano de la Propiedad Industrial

REPRESENTACIÓN DE LA SOLICITUD DE REGISTRO DE PATENTE ENVIADA A TRAVÉS DEL PORTAL DE ACCESO A SERVICIOS ELECTRÓNICOS (PASE).

Folio
Folio: MX/E/2020/020185
Fecha de solicitud del trámite
17 04 2020
s de la solicitud
Expediente: MX/a/2020/003941
ID Solicitud: 27158
Fecha: 17/04/2020 02:59:27
- N 11-21(-/-)
s) solicitante(s)
Personas morales
RFC: UPA761015KQ0
Denominación o razón social:
UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.
Nacionalidad: MÉXICO
Teléfono (Lada, Número, Extención): 2222299400, Ext. 7970
Correo electrónico: eugenio.urrutia@upaep.mx
Continúa en anexo

800.110

Instituto Mexicano de la Propiedad Industrial

Domicilio del (de los) solicitante(s)						
Código postal: 72410						
Calle: 21 SUR						
Número exterior: 1103 Número interior:						
Colonia: BARRIO DE SANTIAGO						
Municipio o delegación: PUEBLA	Localidad:					
Estado o entidad federativa: PUEBLA	Entre calles:					
País: MÉXICO						

Datos del (de los) inventor(es) /diseñador(es)	
CURP:	
Nombre(s): Genoveva	
Primer apellido: ROSANO	
Segundo apellido: ORTEGA	
Nacionalidad: MÉXICO	
Teléfono (Lada, Número, Extensión): 222299400, Ext. 7963	
Correo electrónico: genoveva.rosano@upaep.mx	Continúa en anexo

Domicilio del (de los) inventor(es)/diseñador(es)					
Código postal: 72060					
Calle: CENTENARIO					
Número exterior: 24 Número interior:					
Colonia: REAL DEL MONTE					
Municipio o delegación: PUEBLA	Localidad:				
Estado o entidad federativa: PUEBLA	Entre calles:				
País: MÉXICO					

Instituto Mexicano de la Propiedad Industrial

Datos del (c	de los) apoderado(s)
CURP: UUAF600912HPLRLR07	RGP: 21065
Nombre(s): Francisco Fernando Eugenio	Personas autorizadas para oír/recibir notificaciones:
Primer apellido: URRUTIA	Elvia GUERRERO HERNANDEZ, Daniel Alberto FLORES ALONSO, Johanna OLMOS LÓPEZ
Segundo apellido: ALBISUA	
Nacionalidad: MÉXICO	
Teléfono (Lada, Número, Extensión): 2226707528	•
Correo electrónico: eugenio.urrutia@upaep.mx	O Continúa en anexo
Domicilio de	el (de los) apoderado(s)
Código postal: 72410	
Calle: 21 SUR	
Número exterior: 1103	Número interior:
Colonia: BARRIO DE SANTIAGO	
Municipio o delegación: PUEBLA	Localidad:
Estado o entidad federativa: PUEBLA	Entre calles:
País: MÉXICO	
Dat	es de la Calicitud

Datos de la Solicitud	
Denominación o título de la invención:	
MÉTODO PARA SEPARAR MATERIALES DE ENVASES MULTICAPAS UTILIZANDO VINAZAS	
Fecha divulgación previa:	

Divisional de la solicitud
Fecha presentación:
Número:
Figura jurídica:

Prioridad Reclamada					
País:	Fecha de Presentación:	Número de Serie:			

Instituto Mexicano de la Propiedad Industrial

Observaciones

Bajo protesta de decir verdad, el firmante manifiesta que los datos asentados en esta solicitud son ciertos y que en caso de actuar como mandatario, cuenta con facultades para llevar a cabo el presente trámite.

Cadena Original

FRANCISCO FERNANDO EUGENIO URRUTIA ALBISUA|CURP|UUAF600912HPLRLR07|RENAPO|17/04/2020 14:59:13| 1093104|41|Documento_Firma_Electronica.pdf|2266.2 KB|ky9hVSAUZc/mab/sJPhuuN+oKU8=|000027158|PATENTE|Normal| MÉTODO PARA SEPARAR MATERIALES DE ENVASES MULTICAPAS UTILIZANDO VINAZAS|UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.C.|MORAL|Genoveva ROSANO ORTEGA|Francisco Fernando Eugenio URRUTIA ALBISUA|UUAF600912HPLRLR07|

Sello Digital

HjqmEKt4p3WC9SGMQAD6Uuy/WXZKyJ74TSNnJ9lu5kA=

Anexo(s)

Hoja anexa a la solicitud ID: 27158 De Fecha: 17/04/2020 02:59:27

Lista de Solicitantes

Solicitante 2

- Causahahiente
- Nombre: SUMINISTROS, CONSULTORÍA Y PROYECTOS S.A. DE C.V.
- RFC: SCP150326H53
- Nacionalidad: MÉXICO
- Domicilio: Calle EJIDO, Ext. 5982, Col. SAN BALTAZAR LINDA VISTA, C. P. 72550, Tel. 2212179232, E-mail s.mendoza@sucopsa.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Instituto Mexicano de la Propiedad Industrial

Lista Inventores/Diseñadores

Inventor/Diseñador 2

- Nombre: Francisco Javier SÁNCHEZ RUÍZ
- CURP: SARF810810HMNNZR01
- Nacionalidad: MÉXICO
- Domicilio: Calle CONSTITUCIÓN, Ext. 165, Int. A, Col. MORELOS, C. P. 58030, Tel. 2215307720, E-mail franciscojavier.sanchez@upaep.mx
- Población, Estado y País: MORELIA, MICHOACÁN, MÉXICO

Inventor/Diseñador 3

- Nombre: Carlos Arturo VEGA LEBRÚN
- CURP: VELC690726HVZGBR04
- Nacionalidad: MÉXICO
- Domicilio: Calle CENTENARIO, Ext. 24, Col. REAL DEL MONTE, C. P. 72060, Tel. 2225800893, E-mail carlosarturo.vega@upaep.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Inventor/Diseñador 4

- Nombre: Juan Francisco MÉNDEZ DÍAZ
- CURP: MEDJ780228HPLNZN05
- Nacionalidad: MÉXICO
- Domicilio: Calle IGNACIO MEJIA, Ext. 14, Col. LOMAS DE LORETO, C. P. 72260, Tel. 2227695327, E-mail juanfrancisco.mendez@upaep.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Inventor/Diseñador 5

- Nombre: Saúl Abel MENDOZA MARTÍNEZ
- CURP: MEMS790901HPLNRL02
- Nacionalidad: MÉXICO
- Domicilio: Calle ANTONIO CASO, Ext. 1612, Int. 1, Col. CIUDAD SATÉLITE, C. P. 72320, Tel. 2212179232, E-mail s.mendoza@sucopsa.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Inventor/Diseñador 6

- Nombre: René MENDOZA MARTÍNEZ
- CURP: MEMR890403HPLNRN04
- Nacionalidad: MÉXICO
- Domicilio: Calle EJIDO, Ext. 5949, Int. 2, Col. SAN BALTAZAR LINDA VISTA, C. P. 72550, Tel. 2212179264, E-mail r.mendoza@sucopsa.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Instituto Mexicano de la Propiedad Industrial

Número de Páginas Manifestadas

- Número de Páginas: 31

FORMATO ELECTRÓNICO DE PAGOS POR SERVICIOS

NUMERO DE FOLIO 10045582763

INDUSTRIAL

PERIFÉRICO SUR 3106, COL JARDINES DEL PEDREGALO DEL ALVARO OBREGON, CP 01900, CIUDAD DE MÉXICO

RFC: IMP-931211-NE1

TRÁMITE EN LÍNEA: 168384

TRAIVITE EN LINEA. 100304	REGIM	EN FISCAL(603	PERSONAS M	ORALES CON FINI	ES NO LUCRATIVOS
CONCEPTO	CANTIDAD U. M.	ARTÍCULO	PRECIO UNITARIO	IMPORTE TARIFA	DESCUENTO
Por la presentación de una solicitud de patente y sus anexos de hasta 30 hojas en términos del artículo 43 de la Ley, así como por los servicios a que se refiere el artículo 38 del mismo ordenamiento.	1 Servicio	1a	\$4,550.00	\$2,275.00	
Por el concepto a que se refiere el artículo 1a, por cada hoja adicional	1 Servicio	1aBIS	\$61.00	\$30.50	\$30.50
					1 .
PUE - PAGO EN UNA SOLA EXHIBICIÓN					
				TOTAL TARIFA	\$2,305.50
APLICA DESCUENTO - UNIVERSIDAD ANOTACIONES:				DESCUENTO I.V.A	\$2,305.50 \$368.88
MÉTODO PARA SEPARAR MATERIALES DE ENVASES MULTICAPAS UTILIZANDO VINAZAS				SUBTOTAL	\$2,674.38
			AC	CTUALIZACIÓN	\$0.00
DOS MIL SEISCIENTOS SETENTA Y CUATRO PESOS 38/100 MN				RECARGOS	\$0.00
			ТС	TAL A PAGAR	\$2,674.38

Este documento no es un comprobante fiscal. Su factura estará generada dentro de los tres días hábiles posteriores a su pago. El formato de pago FEPS sin factura es válido para presentar el trámite que ampara ante el IMPI. Si tiene algún problema para descargar su factura electrónica, envíe los folios FEPS correspondientes al siguiente correo electrónico:

buzon@impi.gob.mx

Hubo problemas al generar el sello electrónico

DATOS DEL TITULAR O SOLICITANTE

NOMBRE: UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.C.

DIRECCIÓN: Calle. 21 SUR No.Ext. 1103 No.Int. , Col. BARRIO DE SANTIAGO, CP.72410, PUEBLA, PUEBLA, MX

RFC: UPA761015KQ0

BANCO: Bancomer

CONVENIO: 976075

FECHA DE OPERACION: 17/04/2020 11:51:45 FOLIO: 143776036000000000000236556

Ciudad de México, 17/04/2020

Solicitud de: PATENTE

Bajo Protesta de decir verdad declaro, con respecto al beneficio señalado en la Cuarta Disposición General de la Tarifa por los servicios que presta el Instituto Mexicano de la Propiedad Industrial, y con fundamento en la fracción III de dicha Disposición, que me encuentro en el supuesto abajo señalado, por lo que solicito el 50% de descuento de la Tarifa establecida para el Artículo 1a, 1aBIS.

Hago la presente declaración en cumplimiento de dicha disposición, según el Acuerdo por el que se da a conocer la Tarifa por los servicios que presta el Instituto Mexicano de la Propiedad Industrial, publicado en el Diario Oficial de la Federación con fecha 23 de agosto de 1995.

Micro y Pequena Empresa	()
Instituto de Investigación Científica y Tecnológica del Sector Público	()
Universidad	()	X)
Diseñador/Inventor Independiente	()
ATENTAMENTE:		

Nombre: Francisco Fernando Eugenio URRUTIA ALBISUA por poder de UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.C.

Instituto Mexicano de la Propiedad Industrial

DIRECCIÓN DIVISIONAL DE ASUNTOS JURÍDICOS SUBDIRECCIÓN DIVISIONAL DE REPRESENTACIÓN LEGAL

EXPEDIENTE: RGP-DDAJ-21065 OFICIO: SDRL.2012.0753

ASUNTO: Constancia de inscripción en el Registro

General de Poderes.

REF.: Escrito recibido el 18 de mayo de 2012, bajo el

folio 779.

México, D.F. a 1 de junio de 2012.

C. FRANCISCO FERNANDO EUGENIO URRUTIA ALBISUA 21 SUR 1103 COLONIA SANTIAGO C.P. 72410 PUEBLA PUEBLA P.R.E.S.E.N.T.E

En contestación a su escrito de referencia, se le comunica que para los fines declarativos de registro, con fundamento en los artículos 181 fracción II de la Ley de la Propiedad Industrial, así como 16 fracción I de su Reglamento y de conformidad a las formalidades y facultades contenidas en la carta poder que obra en el expediente citado al rubro, se expide la presente constancia de inscripción en el Registro General de Poderes de este Instituto, del poder conferido al C., FRANCISCO FERNANDO EUGENIO URRUTIA ALBISUA, por la persona moral, UNIVERSIDAD POPULAR AUTONOMA DEL ESTADO DE PUEBLA A.C.; para efecto de tramitar solicitudes de patentes, registros, o la inscripción de licencias o sus transmisiones quedando registrado con el número RGP-DDAJ-21065 a partir del 18 de mayo de 2012.

El ejercicio de las facultades que constan en el poder que se registra se encuentra limitado y sujeto a las formalidades y disposiciones de la Ley de la Propiedad Industrial y su Reglamento, que para cada trámite establece.

Asimismo, se hace de su conocimiento que este Organismo al inscribir el documento antes indicado, deja a salvo los derechos de terceros para impugnar su registro y, en su caso, proceder a la cancelación de la inscripción.

El presente se signa además, con fundamento en les artículos 6º fracción XXII, 7 bis 1, 7 bis 2 y 181 de la Ley de la Propiedad Industrial y Capítulo IV de su Reglamento, publicados en el Diario Oficial de la Federación el 2 de agosto y 23 de noviembre de 1994, respectivamente; 1º, 2º, 3º fracción V, inciso i), subíndice i), 4º, 5º, 11 fracción II y su último párrafo, así como 20 fracción V del Reglamento del Instituto Mexicano de la Propiedad Industrial, publicado en el Diario Oficial de la Federación el 14 diciembre de 1999, reformado y adicionado el 15 y 24 de julio de 2004 y el 7 de septiembre de 2007 por publicación en el referido órgano de difusión oficial; 1º, 2º, 3º, 4º, 5º fracción V, inciso i), subíndice i), 15 fracción II y su último párrafo, 24 fracción V y 38 de su Estatuto Orgánico, así como 1º y 12 inciso e) y su penúltimo párrafo del Acuerdo que Delega Facultades en los Directores Generales Adjuntos, Coordinadoro, Directores Divisionales, Titulares de las Oficinas Regionales, Subdirectores Divisionales, Coordinadores Departamentales y otros Subalternos del instituto Mexicano de la Propiedad Industrial, publicados en la misma fuente informativa el 27 y 15 de diciembre de 1999, reformados, adicionados y aclarados mediante publicaciones del 29 de julio, 4 de agosto de 2004 y 13 de septiembre de 2007, respectivamente.

ATENTAMENTE EL SUBDIRECTOR DIVISIONAL DE REPRESENTACIÓN LEGAL

C. CARLOS RAÚL SANDOVAL FERNÁNDEZ

MÉTODO PARA SEPARAR MATERIALES DE ENVASES MULTICAPAS UTILIZANDO VINAZAS

CAMPO TÉCNICO

5

10

15

20

25

30

La presente invención pertenece al campo técnico de la química. Particularmente, al campo técnico de los procesos para separación y aprovechamiento de desechos y, aún más particular, se refiere a un método para separar materiales de envase multicapas, mediante el uso de vinazas, para su reciclaje.

ANTECEDENTES

A nivel mundial, especialmente en las grandes ciudades el manejo de los residuos sólidos ha representado un gran problema debido, entre otras cosas, a los altos volúmenes de residuos sólidos generados por los usuarios; cuando el manejo de éstos no es el adecuado, puede afectar la salud de los ciudadanos y al medio ambiente. Ante este escenario surge la necesidad de proveer nuevas técnicas para el tratamiento de los desechos y, en su caso, su reciclaje. Para el caso de la presente memoria descriptiva, el problema se enfoca particularmente a dos materiales de desecho, por una parte, los envases multicapa y por la otra a las vinazas.

El envase multicapa es mejor conocido como envase Tetra Pak o Tetra Brik, se introdujo al mercado en 1963, como resultado de una larga investigación para sustituir el envase con forma de tetraedro. Debido a que en cada envase se encuentran 21g de cartón, 5.8g de polietileno y 1.4g de aluminio, dispuestos en 5 capas, 3 de polietileno, 1 de aluminio y 1 de cartón, su manejo y tratamiento es complejo y costoso, y no en todos los casos se logra separar los materiales.

Hoy en día se conocen diversas formas para reciclar los envases, tal es el caso descrito en la solicitud mexicana MX/a/2014/001722, la cual se refiere a un proceso para la obtención de material compuesto por aglomerado de envases asépticos, que comprende las siguientes etapas: a) prensar granos de no más de 5mm de diámetro de envase aséptico sobre una matriz a una presión de entre 3T a 15T, de acuerdo a la forma que se requiera; y b) someter a una compresión térmica durante aproximadamente 40 minutos a una temperatura promedio de 300 °C sin quitar la presión antes lograda sobre los granos de envase aséptico, para derretir el polietileno del envase aséptico y unir el papel y aluminio.

10

15

20

25

5

Otro ejemplo, es la solicitud alemana DE 10054043 A, la cual menciona que el material de embalaje usado con capas de papel/cartón y material (in) orgánico como el polietileno (PE) se recicla por desintegración para dar una mezcla de partículas como fibras de celulosa y fibras de PE, que luego se utiliza como aditivo estabilizante en betún. Reciclaje de materiales de embalaje usados, especialmente Tetra Pak (compuestos resistentes a la humedad que comprenden capas de: (A) un material orgánico como papel/cartón; y/o (B) materiales orgánicos y/o inorgánicos como el polietileno (PE)). En este método, (A) el material usado se desintegra para dar una mezcla de partículas de papel orgánico fibroso (A) en forma de celulosa y partículas de (B) como fibras de PE que se usa como un aditivo estabilizante y se mezcla con betún. En el proceso estándar para la producción de betún o productos de betún, (b) las partículas de (B), como las fibras de PE, se arrastran con las partículas de (A) en el proceso de mezcla y se distribuyen homogéneamente para proporcionar polímeros modificados, estabilizados físicamente betún, (c) la extensión de la distribución homogénea y la eficacia de estos rellenos en el betún (o mezcla) resulta en un valor de menos de 0.02 M.% en la prueba de escurrimiento de Schellenberg y (d) el betún producido muestra valores de penetración de aguja de 1 / 25-1 / 26 mm, valores de prueba de anillo y bola de 60-61.5 y valores más altos de resistencia de ranura de la pista.

En otros casos el reciclaje del los envase multicapa se enfocan a fabricar un aglomerado parecido a la madera, con el cual se pueden fabricar muebles, revestimientos, sin embargo, en la actualidad, la inclinación del reciclaje está encaminada a separar los componentes de los envases asépticos como es el caso del aluminio y el papel, o bien para generar energía en el caso del polietileno.

La patente europea EP 0801168 (B), propone un método y aparato para recolectar capas individualmente de una película laminada que contiene muchas capas hechas de diferentes materiales, pelando o separando las capas una de la otra. La película laminada que tiene una pluralidad de capas, hechas de diferentes materiales, se tritura en una pluralidad de fragmentos a procesar; y los fragmentos a procesar se pelan o separan según el tipo de capa aplicando una fuerza de impacto por fricción a cada uno de los fragmentos a procesar. Posteriormente, las capas peladas o separadas obtenidas en el paso de pelado y separación se someten a un paso de clasificación de la fuerza del viento. Las capas recogidas en el estado mixto se separan unas de otras, y se recogen individualmente. Sin embargo, el método va dirigido únicamente a la separación de capas del envase para obtener las fibras por separado.

Si bien, los envases multicapa son 100% reciclables gracias a su composición de materiales reciclables como el aluminio, cartón y polietileno, el reciclaje a gran escala es costoso ya que comprende una etapa de separación de los materiales, lo cual es sumamente complicado, por otro lado el reciclaje, lo cual se puede apreciar a fondo en los diversos documentos del estado de la técnica, que en su mayor parte no requiere una separación completa del material, más bien se utiliza en conjunto para elaborar o reforzar materiales para la construcción, con propiedades mecánicas y acústicas mejoradas. Por su parte los procesos de separación involucran temperaturas y trabajos mecánicos, que requieren de máquinas especiales que complican su implementación y acceso y, por su puesto, elevan los costos del proceso.

Por otra parte, otro desecho industrial (agua residual) altamente contaminante son las vinazas, éstas son el residuo final de la fermentación y destilación del mosto de diversos cultivos (sorgo, maíz, cebada, remolacha, agave, caña de azúcar etc.) en la industria de la producción de alcohol. Las vinazas son un líquido de olor dulce y de color marrón o café oscuro, son altamente contaminantes por su elevada concentración de fenoles las cuales son considerados como recalcitrantes por su alta dificultad para degradarse, conductividad, elevada dureza, y cantidad de sólidos totales tanto en suspensión como disueltos, lo cual indica que es un residuo potencialmente tóxico para la vida acuática si se realiza su vertimiento sin tratamiento. En producción se obtienen entre 12 y 15 litros de vinaza por cada litro de alcohol (Conadesuco, 2016). El tipo de vinaza depende directamente del proceso de obtención de alcohol y del tipo de producto agrícola que se utiliza para preparar el mosto a través de fermentación.

Las aguas residuales de las destilerías imponen grandes cargas contaminantes que deberán abatirse en las plantas de tratamiento de aguas, debido a los altos niveles de color café, demanda química de oxígeno (DQO), la demanda bioquímica de oxígeno (DBO5) a los 5 días y, de los sólidos disueltos y en suspensión. En este sentido, se conocen muchos métodos encaminados al tratamiento de las vinazas antes de su descarga a bienes nacionales para disminuir los contaminantes presentes, además de otras técnicas que permiten aprovecharlo para elaborar alimentos para peces, vinagre, o más complejos como el uso de la vinaza para sacarificación/fermentación de biomasas lignocelulósicas, incluso para obtener dispersantes, entre otros.

Tal es el caso de la solicitud mexicana JL 2003000040 (A) que se refiere a un proceso y equipo para el tratamiento de vinaza residual generada en la industria del tequila en la etapa de destilación y destrozamiento, con el objeto de eliminar los contaminantes contenidos en la vinaza para recuperar el agua por medio de vapor de agua. Esta invención también se refiere a un intercambiador de calor y a una evaporadora de vinaza novedosos que se utilizan dentro del proceso para lograr que

el vapor generado por éste tenga calidad 100 % vapor de agua, obteniendo así un ahorro de agua al utilizar el vapor de nuevo en la línea de proceso, eliminando descargas residuales en canales o ríos. Los sólidos recuperados del proceso pueden ser aprovechados para elaborar subproductos con alto contenido en fibra, azúcar, proteína o como mezcla para alimento de ganado, biofertilizante u obtención de alcoholes etílicos.

5

10

15

20

25

30

Adicionalmente, se conoce la solicitud internacional WO 2013058761 (A), la cual presenta un sistema de tratamiento de aguas residuales que se utiliza para reducir los niveles de contaminantes en las corrientes de desechos de vinaza. El sistema es particularmente eficaz en la reducción de los valores de sólidos suspendidos totales (TSS), sólidos disueltos totales (TDS), demanda biológica de oxígeno (DBO) y demanda química de oxígeno (DQO) por debajo de los límites aceptables. El sistema de tratamiento de aguas residuales incluye los componentes interconectados de una unidad de eliminación de sólidos suspendidos gruesos, una unidad de filtración gruesa, una unidad de ultrafiltración, una unidad de nanofiltración y una red de ósmosis inversa. La producción de dicho sistema puede cumplir con los estándares de agua potable.

La solicitud mexicana MX 2017014868 (A) provee un proceso de obtención de un vinagre a partir del tratamiento de vinazas de agave y miel de agave, el cual comprende una etapa de filtración para eliminar sólidos, esterilización y evaporación/concentración, adición de ácido acético, agua, conservadores y azúcares, edulcorantes provenientes del agave.

En la patente mexicana MX 348143 (B) se describe una alternativa para resolver en forma completa los problemas existentes de vinaza, en particular en la producción de bioetanol de materias primas vegetales, se propone un método para producir alimentos de crustáceos del género arteria (camarón de salmuera) o copépodos (crustáceos de pies de remos) o de daphnia (pulgas de agua) o de miembros en forma de rotíferas o protozoos (protozoarios) estando caracterizado este método en que los cultivos de crustáceos /microbios se alimentan por lo menos

parcialmente con vinaza, preferiblemente vinaza delgada, en particular procedente de la producción de bioetanol, y con las levaduras contenidas en la vinaza. Con relación a lo anterior, se propone igualmente que el calor de proceso producido durante la producción de vinaza, en particular en el transcurso de la producción de bioetanol, se aprovecha para calentar el agua para el cultivo de crustáceos/microbios y/o algas a fin de utilizar el contenido de energía térmica de la vinaza de una manera útil.

Derivado del análisis realizado al estado de la técnica no se encontró algún documento que divulgue un método que involucre la aplicación de vinazas en un proceso para separar los distintos materiales de los envases multicapas. Debe destacarse que el método propuesto en esta invención, no es derivable de manera obvia ni sugerido por las enseñanzas del estado de la técnica, esto en virtud que los métodos para el tratamiento de la vinaza están encaminados a disminuir los contaminantes presentes, además de otras técnicas que permiten aprovecharlo para elaborar alimentos para peces, vinagre, o más complejos como el uso de la vinaza para sacarificación/fermentación de biomasas lignocelulósicas, incluso para obtener dispersantes, entre otros. Sin embargo, hasta el momento no es conocido su uso para separar materiales de envases multicapas.

Si bien, los envases multicapa son reciclables en su totalidad, gracias a su composición de materiales reciclables como el aluminio, cartón y polietileno, el reciclaje a gran escala es costoso ya que comprende una etapa de separación de los materiales, lo cual es sumamente complicado, por otro lado el reciclaje, lo cual se puede apreciar a fondo en los diversos documentos del estado de la técnica, que en su mayor parte no requiere una separación completa del material, más bien se utiliza en conjunto para elaborar o reforzar materiales para la construcción, con propiedades mecánicas y acústicas mejoradas. Por su parte los procesos de separación involucran temperaturas y trabajos mecánicos realizados por máquinas especiales, que complican su implementación y acceso.

OBJETO DE LA INVENCIÓN

De acuerdo con lo anterior, la presente invención esta dirigida a proveer una solución integral que involucra el tratamiento y aprovechamiento de dos diferentes materiales de desecho para ser aprovechados nuevamente y reducir la carga contaminante que cada uno conlleva.

Un objeto de la presente invención es proporcionar un método o proceso para reciclar envases multicapas.

10

5

Otro objeto de la presente invención es proporcionar un método o proceso para separar los distintos materiales de los envases multicapas.

Otro objeto más de la presente invención es proporcionar un método o proceso que utiliza vinazas para separar los distintos materiales de los envases multicapas.

Otro objeto más de la presente invención es proporcionar un método o proceso que utiliza vinazas para separar los distintos materiales de los envases multicapas sin requerir de maquinaria muy compleja o costosa, ni de altas temperaturas, disminuyendo así los altos costos del reciclaje de los envases multicapas.

Los objetivos de la presente invención antes referidos y aun otros no mencionados, serán evidentes a partir de la descripción de la invención y las figuras que con carácter ilustrativo y no limitativo la acompañan, que a continuación se presentan.

BREVE DESCRIPCIÓN DE LAS FIGURAS

30

20

25

La figura 1 muestra la composición y el orden de las capas en los envases multicapa.

La figura 2 muestra un diagrama esquemático de la planta para separación de envases multicapa.

DESCRIPCIÓN DE LA INVENCIÓN

5

10

15

20

25

La presente invención se refiere a un método y una planta para separar materiales de envase multicapas mediante el uso de vinazas. El método propuesto permite brindar una solución al tratamiento de ambos desperdicios o residuos, al tiempo que permite el reciclaje de envases multicapa. Un residuo es material o producto desechado y que se encuentra en estado sólido, semisólido, líquido o gas contenido en recipientes o depósitos. Estos pueden ser susceptibles a ser valorizados o requieren de algún proceso de tratamiento para su disposición final conforme a lo establecido en la legislación. Los residuos sólidos, se clasifican de acuerdo a sus características y orígenes en tres grupos: residuos sólidos urbanos (RSU), residuos de manejo especial (RME, generados en los procesos productivos y que son producidos por grandes generadores de RSU) y residuos peligrosos (RP).

El incremento de la producción de RSU es proporcional al aumento poblacional y al estilo de vida (mayor consumo de bienes y servicios). Por lo que los temas como la recolección, manejo y disposición final son de mayor importancia, ya que una mala disposición puede provocar focos de contaminación o infección para la población.

El envase multicapa es un envase para contener bebidas y/o alimentos, cuya finalidad es la conservación de la frescura en los mismos. El envase inicialmente fue concebido a partir de un rollo de papel recubierto con plástico, que una vez lleno se sellaba por encima del nivel del líquido (Tetra Pack, 2019). Actualmente estos envases han evolucionado y mejorado tecnológicamente a partir de la sobre posición de capas de cartón, aluminio y polietileno.

El propio proceso de fabricación de los envases multicapa, que garantiza su hermeticidad, y resistencia, hacen de este un complejo sistema de gran utilidad, pero único uso, que dan al empaque las características principales versus los envases tradicionales que son: ligereza, manejabilidad, facilidad de transportación, no requieren cadena de frío hasta una vez abiertos y se abren y cierran varias veces. En la figura 1 se muestra la composición y el orden de las capas en los envases multicapa utilizada actualmente, dada por Tetrapack (2019).

Por su parte, las vinazas provienen de la destilación del mosto de productos agrícolas con alto contenido de almidones como el maíz, sorgo y trigo, las frutas con altos contenidos de azúcares como la piña, la manzana y la uva, la caña de azúcar y los residuos agrícolas; se obtienen de la fermentación y destilación de los mostos; son el principal residuo orgánico altamente contaminante en la obtención de alcohol. Es un líquido de color café, con un pH ácido, olor dulce, presencia de compuestos fenólicos y alto contenido de materia orgánica disuelta y en suspensión. Este residuo proveniente de la destilería, puede variar de acuerdo con la materia prima utilizada para la fermentación (Ibarra-Camacho, 2017). A continuación, en las siguientes tablas y gráficos (elaboración propia) se refiere la composición química general de las vinazas según el producto destilado:

20

5

10

Tabla 1. Características generales físico-químicas de las vinazas del agave (Ibarra-Camacho, 2017)

Característica	Unidades	Promedio
рН	U	3.95
Sólidos Totales (ST)	mg/L	42 877.5
Sólido Totales Fijos (STF)	mg/L	9 432.5
Sólidos Totales Volátiles	mg/L	33 430
(STV)		
DQO	g/L	51.53
Nitrógeno total	%	0.73

Tabla 2. Composición química general de una vinaza en datos porcentuales (Leticia, 2012)

Compuestos	%
Alcanos y alquenos	1.94
Aromáticos	0.92
Ácidos grasos	0.4
Esteres	0.03
Lactona	3.09
Ligninas	0.07
Compuestos de nitrógeno	1.99
Poli aromáticos	0.05
Fenoles	2.34
Polisacáridos	84.5

Tabla 3. Análisis de metales presentes en vinaza.

5

Metal	Sodio	Potasio	Cobalto	Cobre	Hierro	Manganeso	Molibdato	Vanadio	Zinc
mg/L	45.61	67.91	0.045	0.567	33.79	2.232	0.011	0.028	0.591

Tabla 4. Rango en la composición química de las vinazas

Compuesto	mg/L
Ácido Láctico	110
Ácido Acético	1930-2500
Ácido Propiónico	40-30
Ácido Butirico	20-30
Etanol	2450-3720

Tabla 5. Rango en la composición química (compuestos mayoritarios) de la vinaza de la producción de alcohol etílico

Compuesto	mg/L
Sodio	45.61
Potasio	67.91
Nitrógeno	330-480
ácido fosfórico, P ₂ O ₅	90-610
K₂O	2100-3400
CaO	570-1460
MgO	330-580
SO ₄ ²⁻	1500
Ácido Piroglutámico	167755.5
Ácido Itacónico	94553.1

Ácido Fumárico	39561.3
3 metoxi 4	54901.8
hidroxifenilglicerol	
Ácido p-hidroxi-benzoico	48801.6
Ácido Palmitico	34567.8

Como se indicó anteriormente las aguas residuales de la destilería imponen altas cargas contaminantes en las plantas de tratamiento de aguas residuales debido a los altos niveles de color, la demanda química de oxígeno (DQO), la demanda biológica de oxígeno (DBO) y los sólidos en suspensión. En este sentido, se conocen muchos métodos encaminados al tratamiento de las vinazas antes de su descarga para disminuir los contaminantes presentes, además de otras técnicas que permiten aprovecharlo para elaborar alimentos para peces, vinagre, o más complejos como el uso de la vinaza para sacarificación/fermentación de biomasas lignocelulósicas, incluso para obtener dispersantes, entre otros. Sin embargo, hasta el momento no es conocido su uso para separar materiales de envases multicapas.

5

10

15

20

25

Si bien, los envases multicapa son 100% reciclables gracias a su composición de materiales reciclables como el papel aluminio, cartón y polietileno, el reciclaje a gran escala es costoso ya que comprende una etapa de separación de los materiales, lo cual está sumamente tecnificado y, por lo tanto, complicado, por otro lado el reciclaje, lo cual se puede apreciar a fondo en los diversos documentos del estado de la técnica, que en su mayor parte no requiere una separación completa del material, más bien se utiliza en conjunto para elaborar o reforzar materiales para la construcción, con propiedades mecánicas y acústicas mejoradas. Por su parte los procesos de separación involucran temperaturas y trabajos mecánicas realizados por máquinas especiales que complican su implementación y acceso.

La planta de separación de envases multicapa comprenden los siguientes equipos:

Una planta de separación de envases multicapa (100), caracterizada porque comprende:

- a) Al menos una banda de separación (101), en la cual se realiza la selección y separación del empaque multicapa de los demás residuos sólidos, por medio de diferencia de masa (peso) y densidad, a través de un sistema de refracción de luz (sensor de haz de luz);
- b) Al menos un tanque de almacenamiento de vinazas (102), que puede presentar un control de temperatura (40º a 100°C) y un sistema de aireación, para favorecer el crecimiento de los consorcios microbianos que promueven la asimilación de la materia orgánica, además de evitar la formación de consorcios anaerobios.
- c) Al menos un tanque tolva (103) con mecanismo de agitación-mezclado con velocidades de mezcla entre 400-1200 rpm, preferentemente 800 rpm y control de temperatura entre 50 a 90 °C para separar los distintos materiales de empaques multicapa.
- d) Al menos una lavadora de aspas (104) concebida para recuperar la vinaza con celulosa en suspensión. El polietileno y el aluminio son separados por densidades y gravedad.
 - e) Al menos un separador tipo ciclón (105), donde se separan los materiales por densidad del material, obteniendo material con cantidad mínima de líquido.
 - f) Un sistema de filtros de mangas (106) o filtro prensa donde se recupera y deshidrata el material de celulosa.

25

5

En una realización preferente de la invención, la planta de separación de envases multicapa (100), además puede tener un tanque de agua (107) que abastece un intercambiador solar (108), el cual a su vez está en comunicación fluida con el tanque de almacenamiento de vinaza (102), el tanque tolva (103) con mecanismo de agitación-mezclado y con la lavadora de aspas (104).

Además, el tanque tolva (103) con mecanismo de agitación-mezclado está en comunicación con una criba (109) para separación de materiales, la cual a su vez se comunica con una fosa de recuperación de vinaza (110).

10

30

5

El proceso para realizar la separación de los distintos materiales del envase multicapa utilizando vinaza, a continuación, se describen sus etapas y parámetros o condiciones:

- a) Los residuos sólidos valorizables: cartón, papel, plásticos, metales, envases multicapa entre otros son recolectados y depositados en tolva, que a su vez alimenta a una banda de separación (101), en la cual, a través de sensores de densidad, se separan los envases multicapa del resto de los residuos sólidos;
- b) La vinaza y los envases multicapa se mezclan en tanque (103) tolva abierto, en una proporción de 25- 30% vinaza: 70- 85% envases multicapa, manteniendo un régimen de mezclado de entre 400 a 1200 rpm, y una temperatura de reacción de entre 50 a 90°C durante 1 a 3hrs,
- En una modalidad, el régimen de mezclado es de 800 rpm, la temperatura de reacción es de 70°C durante 2 horas.

Como el técnico en la materia podrá imaginar, cualquier tanque-tolva es apropiado para este propósito siempre y cuando presente los mecanismos apropiados para el control de la agitación-mezclado y control de temperatura.

Así mismo, como el técnico en la materia podrá imaginar, si la vinaza se utiliza en un corto tiempo, después de obtenerse, no necesita ninguna condición especial de almacenamiento, sin embargo, si la vinaza se almacena por varios días o más tiempo, entonces es recomendable almacenar la vinaza (102) a una temperatura de entre 40 a 100 °C, con aireación con el propósito de evitar condiciones sépticas y la sedimentación de sólidos en el fondo.

5

10

15

20

25

30

- c) La mezcla heterogénea de envase multicapa-vinaza, se bombea al sistema de cribas (104) donde se separa la vinaza con celulosa disuelta y en suspensión de las demás capas del envase (polietileno y aluminio) por diferencia de densidades y gravedad;
- d) El filtrado de los remanentes de la separación de sólidos en las cribas se lleva a cabo mediante un sistema de filtros (106) para su deshidratación, en esta etapa del proceso se recupera la celulosa.
 - Como el técnico en la materia podrá imaginar, cualquier tipo de filtros son apropiados siempre y cuando permitan recuperar la celulosa, evidentemente, la elección estará influenciada por la capacidad y eficiencia de filtrado, costos, etc. en una modalidad preferida se utilizan filtros de mangas o filtros prensa.
- e) Por último, los sólidos recuperados en el cribado (aluminio y polietileno) son separados por diferencia de densidades y secados en el ciclón secador (105), para evaporar el agua:

MEJOR MÉTODO PARA LLEVAR A CABO LA INVENCIÓN

Los siguientes ejemplos se presentan con fines únicamente de carácter ilustrativo, de ninguna manera pretenden limitar, ni se debe interpretar de forma limitativa, ya que un técnico en la materia entenderá que hay variantes que caen dentro del alcance de protección de la presente invención.

Separación de los materiales de los empaques multicapa utilizando vinazas.

En los presentes ejemplos se evaluaron diferentes vinazas en la separación de materiales de envases multicapas del sector alimentario, se consideraron las siguientes variables del método:

Condiciones y/o parámetros experimentales.

- La experimentación se realizó seleccionando las variables de proceso, obtenidas de la simulación en Aspen Plus V12.0.
 - Velocidad de agitación: 800 rpm
 - Tiempo de residencia en el reactor batch: 3 h
- 15 Temperatura de reacción: 70 °C (343 K)
 - Relación vinaza/empaque multicapa: 1:100 w/v.v
 - Potencial de Hidrógeno: ácido (3.5-4.7)

Vinazas.

20 Para las distintas pruebas se utilizaron muestras de vinaza de mezcal, tequila y de melaza. El procedimiento de evaluación de la separación se presenta a continuación:

La vinaza se puede obtener en dos fuentes diferentes de la producción específica, una de estas fuentes proviene de la fosa de confinamiento del residuo final, mientras que la segunda fuente proviene las colas de la destilación.

Por esta razón, en los ensayos que muestran a continuación se utilizaron ambos tipos de vinazas.

A continuación, se muestran los resultados de las propiedades físicas como densidad y viscosidad de las distintas vinazas utilizadas en la presente invención.

Tabla 6. Resultados de densidad y viscosidad.

Tipo de Vinaza	Densidad (kg/m³)	Viscosidad (Pa⋅m²/s)	Tamaño de partícula (micrones)	рН
Industria de Tequila	1017.5	715.875	947	3.95
Industria de Mezcal	1002.3	707.977	948	4
Industria de la producción de Alcohol Etílico (melaza)	1029.5	699.876	956	3.5

5

Se observa que las viscosidades y densidades, se encuentran dentro de intervalos semejantes entre los diferentes tipos de vinazas usadas para la separación de los empaques multicapa.

Adicionalmente, se observó que las vinazas concentradas presentan bajo valor de pH en un intervalo ácido.

Ejemplo 1: Separación de materiales de envases multicapas con vinaza del tequila.

El proceso de separación de materiales de envases multicapas se llevó a cabo como se indicó previamente (página 9), utilizando las condiciones o parámetros de indicados en la sección previa:

En la figura 2, se muestra de forma esquemática la etapa de separación del empaque multicapa, así como los productos de la separación.

Los resultados de este ejemplo se muestran en la tabla 7, en este se observa que para una relación 1:100 w/v de peso de envase multicapa (composición inicial de 75% celulosa, 20% polietileno de alta y baja densidad y 5% aluminio) y volumen de

vinaza (fosa y columna), se observa que existe una separación aproximada de 73.25 $\pm 0.05\%$ de celulosa, 18.05 $\pm 0.05\%$ polietileno (alta y baja densidad) y 1.85 $\pm 0.05\%$ de aluminio.

5 Tabla 7. Masa separada de los distintos materiales mediante el método de la presente invención utilizando las vinazas del **tequila**, a una relación de 1:100 w/v.

Vinaza de tequila	% Celulosa	% PE (alta densidad)	% PE (baja densidad)	% Aluminio	% total
Composición material a reciclar	75	20		5	100
Vinaza (columna)	73.1 ± 0.05	18.2 ± 0.05	1.8 ± 0.05	5 ± 0.05	98.1
Vinaza (fosa)	73.4 ± 0.05	17.9 ± 0.05	1.9 ± 0.05	5 ± 0.05	98.2

Como se puede observar, a partir de los resultados obtenidos, con la presente invención se obtienen muy altos rendimientos (>98%) de los materiales recuperados. Aún más, los resultados muestras que se obtienen eficiencias similares al utilizar las vinazas provenientes de dos "segmentos" diferentes del proceso obtención del tequila, esto sugiere que a pesar de las posibles diferencias que lleguen a existir entre estas dos vinazas, ambas son apropiadas para la presente invención.

10

20

25

15 <u>Ejemplo 2</u>: Separación de materiales de envases multicapas con vinaza del mezcal.

El proceso de separación de materiales de envases multicapas se llevó a cabo como se indicó previamente (página 9), utilizando las condiciones o parámetros de indicados en la sección previa:

En la figura 2, se muestra de forma esquemática la etapa de separación del empaque multicapa, así como los productos de la separación.

Los resultados de este ejemplo se muestran en la tabla 8. Para una relación 1:100 w/v de peso de envase multicapa (composición inicial de 75% celulosa, 20% polietileno (PE) alta y baja densidad y 5% aluminio) y volumen de vinaza (fosa y

columna), se observa que existe una separación de 72.25 ±0.05 % celulosa, 18.55 ±0.05 % polietileno (PE) alta y baja densidad y 1.35 ±0.05% aluminio.

Tabla 8. Masa separada de los distintos materiales mediante el método de la presente invención utilizando las vinazas del **mezcal**, a una relación de 1:100 w/v.

5

10

15

20

25

Vinaza de Mezcal	% Celulosa	% PE (alta densidad)	% PE (baja densidad)	% Aluminio	% total
Composición material a reciclar	75	20		5	100
Vinaza (columna)	71.8 ± 0.05	18.6 ± 0.05	1.3 ± 0.05	5 ± 0.05	96.7
Vinaza (fosa)	72.7 ± 0.05	18.5 ± 0.05	1.4 ± 0.05	5 ± 0.05	97.6

Como se puede observar, a partir de los resultados obtenidos, con la presente invención se obtienen muy altos rendimientos (>96%) de los materiales recuperados. Aún más, los resultados muestran que se obtienen eficiencias similares al utilizar las vinazas provenientes de dos "segmentos" diferentes del proceso obtención del mezcal, esto sugiere que a pesar de las posibles diferencias que lleguen a existir entre estas dos vinazas, ambas son apropiadas para la presente invención.

<u>Ejemplo 3</u>: Separación de materiales de envases multicapas con vinaza de melaza de la caña de azúcar.

El proceso de separación de materiales de envases multicapas se llevó a cabo como se indicó previamente (página 9), utilizando las condiciones o parámetros de indicados en la sección previa:

En la figura 2, se muestra de forma esquemática la etapa de separación del empaque multicapa, así como los productos de la separación.

Los resultados de este ejemplo se muestran en la tabla 9. Para una relación 1:100 w/v de peso de envase multicapa (composición inicial de 75% celulosa, 20%

aluminio y 5% polietileno de alta y baja densidad) y volumen de vinaza (fosa y columna), se observa que existe una separación de 74.55 ±0.05% celulosa, 17.85 ±0.05% polietileno (PE) alta y baja densidad y 2.1±0.05% aluminio.

5 Tabla 9. Masa separada de los distintos materiales mediante el método de la presente invención utilizando las vinazas de caña de **azúcar**, a una relación de 1:100 w/v.

Vinaza de caña de azúcar	% Celulosa	% PE (alta densidad)	% PE (baja densidad)	% Aluminio	% total
Composición material a reciclar	75	20		5	100
Vinaza (columna)	74.5 ± 0.05	17.8 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.4
Vinaza (fosa)	74.6 ± 0.05	17.9 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.6

Como se puede observar, a partir de los resultados obtenidos, con la presente invención se obtienen muy altos rendimientos (>99%) de los materiales recuperados. Aún más, los resultados muestran que se obtienen eficiencias similares al utilizar las vinazas provenientes de dos "segmentos" diferentes del proceso obtención del mezcal, esto sugiere que a pesar de las posibles diferencias que lleguen a existir entre estas dos vinazas, ambas son apropiadas para la presente invención.

15

20

10

Como el técnico en la materia, podrá corroborar, la aplicación novedosa de vinazas en la industria del reciclado de material multicapa es altamente eficiente, lo que sustenta la actividad inventiva de la presente invención. Se analizaron tres vinazas diferentes y todas ellas mostraron ser apropiadas para la presente invención, presentando eficiencias mayores al 96%, en particular la vinaza derivada de la melaza de la caña de azúcar fue la que mostró el mejor rendimiento total, logrando recuperar del 99.4 al 99.6 del material de los envases multicapas, seguida de la vinaza del tequila, quien logró recuperar >98% y, finalmente, la vinaza del mezcal que presentó un rendimiento >96%.

Tabla 10. Resultados de la eficiencia de las distintas vinazas en la recuperación de los materiales de los envases multicapa.

Tipo de Vinaza	% Celulosa	% (PE) baja densidad	% PE alta densidad	% Aluminio	% total
Composición del material a reciclar	75	20)	5	100
Industria do Toquila	73.1 ± 0.05	18.2 ± 0.05	1.8 ± 0.05	5 ± 0.05	98.1
Industria de Tequila	73.4 ± 0.05	17.9 ± 0.05	1.9 ± 0.05	5 ± 0.05	98.2
Industria de Mezcal	71.8 ± 0.05	18.6 ± 0.05	1.3 ± 0.05	5 ± 0.05	96.7
	72.7 ± 0.05	18.5 ± 0.05	1.4 ± 0.05	5 ± 0.05	97.6
Industria de Alcohol etílico	74.5 ± 0.05	17.8 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.4
	74.6 ± 0.05	17.9 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.6

Así mismo, a partir de los resultados mostrados en la tabla 10, al sumar los valores de PE (de baja y alta densidad), y expresar los valores obtenidos en porcentaje, se observa aún más claramente que las tres vinazas presentan una eficiencia de prácticamente el **100**% para recuperar los materiales de PE y aluminio, presentándose las diferencias en el porcentaje de celulosa recuperado.

Tabla 11. Resultados en porcentaje de la eficiencia de recuperación de los distintos materiales obtenidos con las distintas vinazas.

Tipo de Vinaza	% Celulosa	% (PE) baja y alta densidad	% Aluminio
% del material recuperado del envase multicapa	100	100	100
Industria de Tequila	97.47	100	100
illuustila de Tequila	97.87	99	100
Industria de Mezcal	95.73	99.5	100
muusma de Mezcai	96.93	99.5	100
Industria de Alcohol etílico	99.33	99.5	100
industria de Alconoi etilico	99.47	100	100

Sin pretender limitarse a ningún mecanismo ni teoría, los inventores del presente desarrollo consideran que las variables que más incidencia tiene en el proceso de separación de las capas del empaque son la relación de vinaza/empaque multicapa y el pH de las vinazas, mientras que la temperatura, el régimen de mezcla y tiempo de residencia en el reactor podrían presentar una incidencia media.

No obstante que la anterior descripción se realizó tomando en cuenta las modalidades preferidas del invento, deberá tenerse en cuenta por aquellos expertos en el ramo, que cualquier modificación de forma y detalle estará comprendida dentro del espíritu y el alcance del presente invento. Los términos en los que se ha redactado esta memoria, deberán ser tomados siempre en sentido amplio y no limitativo. Los materiales, forma y descripción de los elementos, serán susceptibles de variación siempre y cuando ello no suponga una alteración de la característica esencial del modelo.

REFERENCIAS

5

10

15

20

25

30

Ecoadmin. (2013). Cartón. Ecologíahoy. Recuperado de https://www.ecologiahoy.com/carton

Barrera, German. (16 de octubre 2017). La vinaza como fuente de ingresos. Colombia. Linkedin. Recuperado de: https://www.linkedin.com/pulse/la-vinaza-como-fuente-de-ingresos-german-barrera/

Congreso de la Unión (2018) Ley General para la Prevención y Gestión de los Residuos.

Diario Oficial de la Federación.

Ecoticias. (5 de agosto de 2009). El impacto ambiental de la elaboración de tequila. Ecoticias. Recuperado de:

https://www.ecoticias.com/eco-america/16161/El-impacto-ambiental-de-laelaboracion-de-tequila-apenas-empieza-a-ser-asumido-por-la-industria-medioambiente-medioambiental-ambiental

- El economista. (22 de julio de 2019). Industria del tequila y el mezcal es la segunda actividad más importante en México. El economista. Recuperado de:

 https://www.eleconomista.com.mx/empresas/Industria-del-tequila-y-el-mezcal-es-la-segunda-actividad-economica-mas-importante-de-Mexico-Inegi-20190722-0073.html
- Giusti, L. (2009) A review of waste management practices and their impact on human health. Waste Management 29: 2227- 2239
- Ibarra, Roberto., león, Leandro, (2019). Caracterización físico-química de vinazas de destilerías. Revista Cubana de Química. Vol.2, 246-257.
- 10 INEGI (2019) INEGI. México. Recuperado de:

5

15

25

30

https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2019/OtrTemEcon/industriatequila.pdf

Informador. (4 de enero de 2011). Quejas contra vinaza de tequileras en Zapotlanejo. Informador. Recuperado de: https://www.informador.mx/Jalisco/Quejas-contra-vinazas-de-tequileras-en-Zapotlanejo-20110104-0102.html

Regadío, M., A.I. Ruiz, M. Rodríguez-Rastrero, J. Cuevas. (2015) A containment and attenuating layers: An affordable strategy that preserves soil and water from landfill pollution.

Waste Management 46: 408-419

Secretaria de Medio Ambiente y Recursos Naturales (2015) Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales. Indicadores Clave, de Desempeño Ambiental y de Crecimiento Verde. Edición 2015.

La gaceta. (9 de julio de 2018). Miden el impacto de regar campos con vinaza. La gaceta. Recuperado de:

https://www.lagaceta.com.ar/nota/773368/actualidad/miden-impacto-regar-campos-vinaza.html

Lopez, M. G., Mancilla-Margalli, N. A., & Mendoza-Diaz, G. (2003). Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry, 51 (27), 7835-7840.

Meléndez, Violeta. (29 de julio de 2016). Tequileras consumen 5 mil millones de litros de agua. El diario NTR.

Recuperado de: https://www.ntrguadalajara.com/post.php?id_nota=46596
Mendoza, Abisaí. (18 de febreo de 2012). México, país de magueyes. La jornada del campo. Recuperado de: https://www.jornada.com.mx/2012/02/18/cam-pais.html
Ramírez, miriam. (13 de mayo de 2017). México, septimo lugar en bebidas alcoholicas. Milenio. Recuperado de: https://www.milenio.com/negocios/mexico-septimo-lugar-en-bebidas-alcoholicas

5

10

25

- Sanchez, enrique. (17 de junio del 2014), méxico a la conquista de nuevos mercados con el tequila: EPN. Excelsior. Recuperado de: https://www.excelsior.com.mx/nacional/2014/06/17/965574#imagen-1
 - Saucedo-Luna, J., Castro-Montoya, A. J., Rico, J. L., & Campos-García, J. (2010).

 Optimization of acid hydrolysis of bagasse from Agave tequilana Weber.

 Revista Mexicana de Ingeniería Química, 9(1), 91-97.
- Secretaría de Energía, (2019) Atlas de Biomasa, (consultado el 29 de septiembre de 2019 en https://dgel.energia.gob.mx/anbio/)
 - Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2016) "Vinazas alternativas de uso", Nota Informativa sobre innovaciones en materia de productividad del sector
- Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2017), Agave y Mezcal Tequilero, (Consultado el 25 de Septiembre de 2019 en https://www.gob.mx/cms/uploads/attachment/file/257066/Potencial-Agave_Tequilero_y_Mezcalero.pdf)
 - SEMARNAT. (2015). Informe de la situación de medio ambiente en México 2015. SEMARNAT. Recuperado de
 - https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf
 - Servin Jungdorf Carl Anthony, Mantilla Morales Gabriela, Hernández Cruz Norma (2017) El Precio el Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua (IMTA)

Canepa-Becerril, M.(2017). Impacto ambiental de envases multicapa, Universidad Nacional Autónoma de México, Tesis de licenciatura, 97 p.

Tecnología del Plástico. (2017). Reciclaje de Tetra Pack abre opciones de negocio en plásticos. Tecnología del Plástico. Recuperado de: http://www.plastico.com/temas/Reciclaje-de-Tetra-Pak-abre-opciones-de-negocio-en-plasticos+122269

Rosa-López, J. de la R. (2018). Cuarto Informe de Labore. Organismo Operado de Servicio de Limpia, Puebla, Pue., 36 p.

Tetra Pack. (2019). Material para envasado para envases de catón Tetra Pack. Tetra

Pack. Recuperado de https://www.tetrapak.com/mx/packaging/materials

Valencia, Oscar Mauricio (2009). Diseño del relleno sanitario intermunicipal para los municipios de Atoyac de Álvarez- Benito Juárez y Técpan (tesis de maestría). Recuperado

de:

http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2918/gali

15

ndovalencia.pdf?sequence=1

REIVINDICACIONES

1.- Un método para recuperar los distintos materiales de un envase multicapas caracterizado porque comprende la aplicación de vinazas.

5

2.- El método para recuperar los distintos materiales de un envase multicapas de conformidad con la reivindicación previa caracterizado además porque comprende las siguientes etapas:

10

a) Mezclar la vinaza con el material multicapa, mantener en agitación entre 400 a 1200 rpm, a una temperatura de entre 50°C a 90°C, durante un periodo de tiempo de entre 1 a 3 horas;

15

- b) Cribar la mezcla para separar la (i) fracción líquida que contiene a la vinaza con la celulosa disuelta y (ii) la fracción sólida que contiene polietileno y aluminio;
- c) Recuperar la celulosa de la fracción líquida mediante filtración; y

20

d) Separar y secar los distintos materiales sólidos por diferencia de su densidad.

3.- El método para recuperar los distintos materiales de un envase multicapas de conformidad con cualquiera de las reivindicaciones 1 o 2 caracterizado además porque el material multicapa comprende una capa de cartón (celulosa), una capa de polietileno y una capa de aluminio.

25

30

4.- El método para recuperar los distintos materiales de un envase multicapas de conformidad con cualquiera de las reivindicaciones 1 a 3 caracterizado además porque las vinazas se seleccionan de entre vinazas de tequila, vinazas de mezcal, vinazas de la producción de alcohol etílico o cualquier combinación entre estas vinazas.

- **5.-** El método para recuperar los distintos materiales de un envase multicapas de conformidad con cualquiera de las reivindicaciones 1 a 2 caracterizado además porque la mezcla de material multicapa con vinaza se encuentra en una proporción de entre 1:1 a 1:1000 (p/v), preferentemente de entre 1:10 a 1:100 (p/v).
- **6.-** El método para recuperar los distintos materiales de un envase multicapas de conformidad con cualquiera de las reivindicaciones 1 a 2 caracterizado además porque el material multicapa puede estar fragmentado o no fragmentado, preferentemente de hasta 1cm2, sin embargo, no es limitativo.
- 7.- El método para recuperar los distintos materiales de un envase multicapas de conformidad con la reivindicación 2 caracterizado además porque la etapa de recuperar la celulosa a partir de la fracción líquida se lleva a cabo por sedimentación y mediante al menos un filtro de manga, filtro de prensa o la combinación entre ellos.
- 8.- El método para recuperar los distintos materiales de un envase multicapas de conformidad con la reivindicación 2 caracterizado además porque la etapa de separar los distintos materiales sólidos, por diferencia de su densidad, se lleva a cabo mediante un ciclón secador.
- 9.- El método para recuperar los distintos materiales de un envase multicapas de conformidad con las reivindicaciones previas caracterizado además porque comprende las siguientes etapas:
 - e) Mezclar el material multicapa con la vinaza, en una proporción 1:100 (p/v), mantener en agitación a 800 rpm, a una temperatura de 70°C, durante un periodo de tiempo de al menos 2 horas;

5

10

- f) Cribar la mezcla para separar la (i) fracción líquida que contiene a la vinaza con la celulosa disuelta y (ii) la fracción sólida que contiene polietileno y aluminio;
- g) Recuperar la celulosa de la fracción líquida mediante filtración, utilizando filtros de manga de diámetro de poro para recuperar hasta sólidos coloidales de entre 10-9 y 10-5 m; y
 - h) Separar y secar los distintos materiales sólidos por diferencia de su densidad a través de un ciclón secador, en el cual el aire ambiente es lanzado a un filtro, a la unidad calefactora/sopladora y es calentado, en el ciclón se alcanzan velocidades de 30m/s en la sección inferior del ciclón y la temperatura se puede ajustar hasta 177°C (350°F).

10

20

25

- 15 **10.** Una planta de separación de envases multicapa (100), caracterizada porque comprende:
 - a) Al menos una banda de separación (101), en la cual se realiza la selección y separación del empaque multicapa de los demás residuos sólidos, por medio de diferencia de masa (peso) y densidad, a través de un sistema de refracción de luz (sensor de haz de luz);
 - b) Al menos un tanque de almacenamiento de vinazas (102), que puede presentar un control de temperatura (40° a 100°C) y un sistema de aireación, para favorecer el crecimiento de los consorcios microbianos que promueven la asimilación de la materia orgánica, además de evitar la formación de consorcios anaerobios.
 - c) Al menos un tanque tolva (103) con mecanismo de agitación-mezclado con velocidades de mezcla entre 400-1200 rpm, preferentemente 800 rpm

y control de temperatura entre 50 a 90 °C para separar los distintos materiales de empaques multicapa.

- d) Al menos una lavadora de aspas (104) concebida para recuperar la vinaza con celulosa en suspensión. El polietileno y el aluminio son separados por densidades y gravedad.
- e) Al menos un separador tipo ciclón (105), donde se separan los materiales por densidad del material, obteniendo material con cantidad mínima de líquido.
- f) Un sistema de filtros de mangas (106) o filtro prensa donde se recupera y deshidrata el material de celulosa.

10

RESUMEN

La presente invención está dirigida a proveer una solución integral que involucra el tratamiento y aprovechamiento de dos diferentes materiales de desecho para ser aprovechados nuevamente y reducir la carga contaminante que cada uno conlleva. En esta tesitura, la presente invención provee un proceso para reciclar envases multicapas, lo cual se logra al utilizar una composición de vinazas para separar los distintos materiales de los envases multicapas sin requerir de maquinaria muy compleja o costosa, ni de altas temperaturas, disminuyendo así los altos costos del reciclaje de los envases multicapas.

5

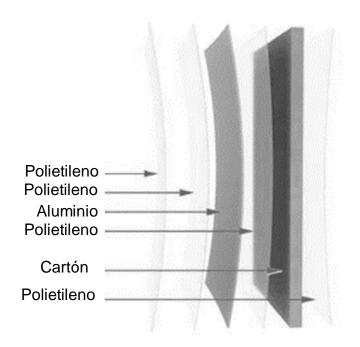


Fig. 1

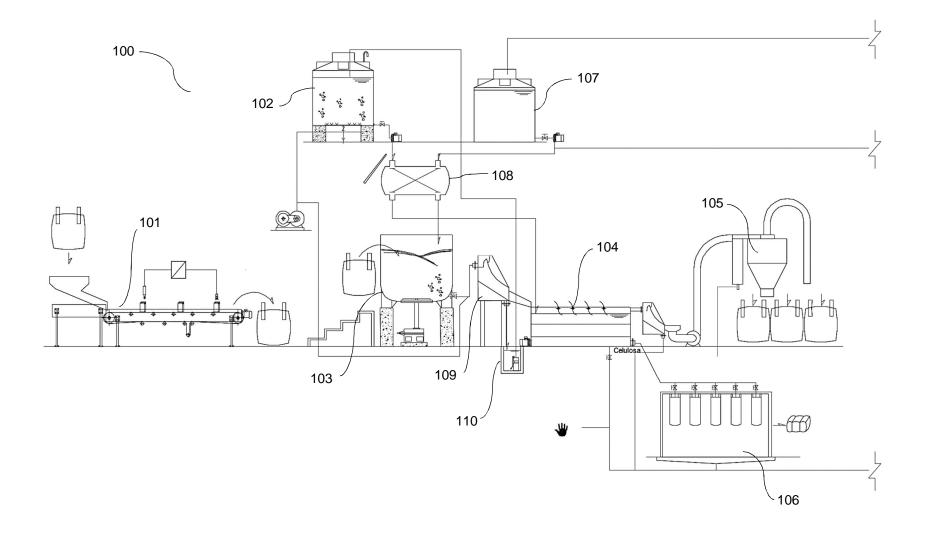


Fig. 2

MX/F/2020/020358

DIRECCIÓN DIVISIONAL DE PATENTES.

SUBDIRECCIÓN DIVISIONAL DE PROCESAMIENTO ADMINISTRATIVO DE PATENTES.

COORDINACIÓN DEPARTAMENTAL DE RECEPCIÓN Y CONTROL DE DOCUMENTOS.

EXPEDIENTE: MX/a/2020/004028

FOLIO DE RECEPCIÓN: MX/E/2020/020358

IDENTIFICADOR DE LA SOLICITUD: 27235

LUGAR, FECHA Y HORA DE RECEPCIÓN

DE LA SOLICITUD:

CIUDAD DE MÉXICO 20/04/2020 02:36:26

ACUSE DE RECIBO DE LA SOLICITUD DE:

Patente

SOLICITANTE(S)

UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA

REPRESENTANTE LEGAL:

Francisco Fernando Eugenio URRUTIA ALBISUA

DOCUMENTOS DE LA SOLICITUD:

DOCUMENTO	NOMBRE ARCHIVO	TAMAÑO	HOJA(S)
SOLICITUD	Solicitud_000027235_20_04_2020.pdf	434.05 KB	5
COMPROBANTE DE PAGO	Pago.pdf	24.27 KB	1
HOJA DE DESCUENTO	HOJA DE DESCUENTO.pdf	25.28 KB	1
CONSTANCIA RGP	RGP Eugenio Urrutia.pdf	103.09 KB	1
DESCRIPCION	DESCRIPCION FINAL ETANOL UPAEP.pdf	181.79 KB	35
REIVINDICACION	REIVINDICACIONES FINAL ETANOL UPAEP.pdf	22.99 KB	6
RESUMEN	RESUMEN FINAL ETANOL UPAEP.pdf	7.32 KB	1
DIBUJOS	FIGURAS V2 ETANOL.pdf	570.3 KB	3

TOTAL DE HOJAS: 53 (No se incluyen hoja(s) del acuse)

Bajo protesta de decir verdad declaró, que se encuentra en el supuesto con respecto al beneficio señalado en la Cuarta Disposición General de la Tarifa por los servicios que presta este Instituto, por lo que solicitó el 50% de descuento de la tarifa establecida, para los artículos que aplique dicho descuento. Se hace la presente declaración en cumplimiento de dicha disposición, según el acuerdo por el que se da a conocer la tarifa por los servicios que presta el Instituto Mexicano de la Propiedad Industrial, publicado en el Diario Oficial de la Federación con fecha 23 de agosto de 1995.

Los documentos adjuntos están sujetos al estudio correspondiente que el Instituto realice de conformidad con la Ley de la Propiedad Industrial y su Reglamento.

La presente solicitud se recibe en términos del Acuerdo por el que se establecen lineamientos en materia de servicios electrónicos del Instituto Mexicano de la Propiedad Industrial, en los trámites que se indican; por lo tanto, previo a su presentación, el usuario aceptó lo siguiente:

- I.- Que el trámite se efectúe, desde su inicio hasta su conclusión, a través de medios de comunicación electrónica;
- II.- Bajo protesta de decir verdad, que revisó en la vista previa la información capturada y los anexos a la solicitud y que éstos son correctos; así mismo que, una vez concluido el proceso, no podría editar o variar la información o sus anexos;
- III.- Bajo protesta de decir verdad, indicó que la información capturada es cierta;
- IV.- Consultar su tablero, al menos, los días quince y último de cada mes, o bien, el día hábil siguiente si alguno de éstos fuere inhábil y que, en caso de no hacerlo, la notificación se tendría por hecha el día hábil siguiente a los días quince y último de cada mes, y
- V.- Dar aviso por escrito, a través del correo electrónico <u>buzon@impi.gob.mx</u>, a la Dirección Divisional de Patentes, dentro de los tres días hábiles siguientes a aquel en que se vea imposibilitado, por causas imputables al Instituto, a consultar el tablero o abrir los archivos depositados en el mismo, en los días señalados en la fracción IV anterior.

A efecto de que los documentos presentados a través del Sistema de Patentes en Línea, produzcan los mismos efectos que los documentos firmados autógrafamente y tengan el mismo valor probatorio, manifiestó bajo protesta de decir verdad, que los documentos son copia íntegra e inalterada del documento impreso; que se encuentren digitalizados en formato PDF (Portable Document Format), y que los remitió de forma legible.

MX/E/2020/02035

Asimismo, desde su registro en el Portal de Acceso a Servicios Electrónicos, manifestó reconocer como propia la CURP, la cual no podrá ser sustituida con posterioridad; reconoció como propia y válida la dirección de correo electrónico proporcionada y aceptó que en ella se le envíe cualquier comunicación relacionada con la cuenta; aceptó que el uso de la contraseña queda bajo su exclusiva responsabilidad y que deberá notificar oportunamente al Instituto, cualquier situación que pudiera implicar un uso indebido; reconoció como propia, veraz y auténtica la información que envíe a través del PASE o de los servicios electrónicos del Instituto, ya sea haciendo uso de su CURP y contraseña o, en su caso, su e-firma; aceptó que el uso de su CURP y contraseña o, en su caso, e-firma, por persona distinta quedará bajo su exclusiva responsabilidad y acepta como propia la información que ésta envíe o descargue a través del PASE o de los servicios electrónicos del Instituto; asumió cualquier tipo de responsabilidad derivada del mal uso que hagan de su CURP y contraseña o, en su caso, su e-firma; y reconoció que el simple uso de los servicios electrónicos del Instituto constituye la aceptación más amplia de las condiciones señaladas en el artículo 11 del Acuerdo por el que se establecen lineamientos en materia de servicios electrónicos del Instituto Mexicano de la Propiedad Industrial, en los trámites que se indican.

Cadena Original

Sello Digital

Dg3IW2hMg4DvodmPOsYyAqnOe7+gqhUgGMFKdusZ7SQPmZOBRNJunJS3zmKDShDFFZ0mrrXouJ/9AmsfpidYtgyT1FXIoJ5iUSFkcXoD4wseQsKuVsr/C26ovItSUGe5gug7voF4Bit2oSVP9UIK9y0QY3Rto0fQk8sTZjHpIDw5KMRwx2WB+PqtlRIRhjtppfbfzu0HZZ5bYT98Ful265ilNKgkkF/U

+PiprYZVaVyXipTEv52ml5aAFRk1vR/s4zL7XaJFa2aXyaUDiqL45fiFeGmZ5019KNRU20DML4aal3KJMmCeXT0MvlKLFt7/mKgIA7OQiUMtxq4gFODPHA==

Para verificar la autenticidad del presente documento, podrá ingresar a la página electrónica https://validadocumento.impi.gob.mx/, escaneando el código QR que aparece a un costado de la e.firma del Servidor Público que signó el mismo, indicando, en su caso, el tipo de documento que pretende validar solicitud, acuse, oficio o promoción); lo anterior con fundamento en lo dispuesto por los artículos 1º fracción III, 2º fracciones II y V, 25, 26 BIS y 26 TER del Acuerdo por el que se Establecen los Lineamientos para el uso del Portal de Acceso a Servicios Electrónicos (PASE) del Instituto Mexicano de la Propiedad Industrial, en los Trámites que se Indican; en caso de no contar con lector QR o en su defecto el Código no pueda ser leído por su dispositivo, puede digitar en la página antes referida el siguiente Código :ORHB3FMmjvo47YLXIG2OykMrSe4=

Instituto Mexicano de la Propiedad Industrial

REPRESENTACIÓN DE LA SOLICITUD DE REGISTRO DE PATENTE ENVIADA A TRAVÉS DEL PORTAL DE ACCESO A SERVICIOS ELECTRÓNICOS (PASE).

Homoclave del formato	Folio
IMPI-00-009	Folio: MX/E/2020/020358
Fecha de publicación en el DOF	Fecha de solicitud del trámite
24 05 2018	20 04 2020
Datos general	es de la solicitud
Solicitud de Patente Normal	
Solicitud de Registro de Modelo de Utilidad	Expediente: MX/a/2020/004028
O Solicitud de Registro de Diseño Industrial	ID Solicitud: 27235
Especifique cual:	Fecha: 20/04/2020 02:36:26
○ Modelo Industrial ○ Dibujo Industrial	
5. 1.//	
Datos del (de l	os) solicitante(s)
Personas físicas	Personas morales
CURP:	RFC: UPA761015KQ0
Nombre(s):	Denominación o razón social:
Primer apellido:	UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.
Segundo apellido:	
Nacionalidad:	Nacionalidad: MÉXICO
Teléfono (Lada, Número, Extensión):	Teléfono (Lada, Número, Extención): 2222299400, Ext. 7970
Correo electrónico:	Correo electrónico: eugenio.urrutia@upaep.mx
O Continúa en anexo	Continúa en anexo

Instituto Mexicano de la Propiedad Industrial

Domicilio del (de los) solicitante(s)			
Código postal: 72410			
Calle: 21 SUR			
Número exterior: 1103	Número interior:		
Colonia: BARRIO DE SANTIAGO			
Municipio o delegación: PUEBLA	Localidad:		
Estado o entidad federativa: PUEBLA	Entre calles:		
País: MÉXICO			

Datos del (de los) inventor(es) /diseñador(es)	
CURP: CUMN970725MPLLT08	
Nombre(s): Nathalia Montserrat	
Primer apellido: CUELLAR	
Segundo apellido: MILIAN	
Nacionalidad: MÉXICO	
Teléfono (Lada, Número, Extensión): 2441587952	
Correo electrónico: nathaliamontserrat.cuellar@upaep.edu.mx	Continúa en anexo

Domicilio del (de los) inventor(es)/diseñador(es)		
Código postal: 74230		
Calle: AVENIDA DE LOS VOLCANES		
Número exterior: 3905	Número interior: B	
Colonia: EL POPO		
Municipio o delegación: ATLIXCO	Localidad:	
Estado o entidad federativa: PUEBLA	Entre calles:	
País: MÉXICO		

instituto Mexicano de la Propiedad Industrial					
Datos del (de los) apoderado(s)					
CURP: UUAF600912HPLRLR07		RGP:			
Nombre(s): Francisco Fernando Eugenio		Personas autorizadas para oír/recibir notificaciones:			
Primer apellido: URRUTIA		Johanna OLMOS LÓPEZ	ANDEZ, Daniel Alberto FLORES ALONSO, Z		
Segundo apellido: ALBISUA					
Nacionalidad: MÉXICO					
Teléfono (Lada, Número, Extensión): 2226707528					
Correo electrónico: eugenio.urrutia@upaep.mx			O Continúa en anexo		
г	Domicilio del (de los	s) anodorado(s)			
	Joinicillo del (de los				
Código postal: 72410					
Calle: 21 SUR					
Número exterior: 1103 Número interior:					
Colonia: BARRIO DE SANTIAGO					
Municipio o delegación: PUEBLA		Localidad:			
Estado o entidad federativa: PUEBLA		Entre calles:			
País: MÉXICO					
	Datos de la	Solicitud			
Denominación o título de la invención: MÉTODO PARA PRODUCIR ETANOL A PARTIR DE	VINAZA ENRIQUECIDA	A CON CELULOSA SEPARA	ADA DE ENVASES MULTICAPAS		
Fecha divulgación previa:					
	Divisional de	la solicitud			
Fecha presentación:					
Número:					
Figura jurídica:					
País:	Prioridad R Fecha de Presenta		Número de Serie:		
гаіз.	recha de Fresenta	JUII.	Inditieto de Sette.		

Instituto Mexicano de la Propiedad Industrial

Observaciones

Bajo protesta de decir verdad, el firmante manifiesta que los datos asentados en esta solicitud son ciertos y que en caso de actuar como mandatario, cuenta con facultades para llevar a cabo el presente trámite.

Cadena Original

FRANCISCO FERNANDO EUGENIO URRUTIA ALBISUA|CURP|UUAF600912HPLRLR07|RENAPO|20/04/2020 14:36:22| 1093104|54|Documento_Firma_Electronica.pdf|2266.2 KB|nB8IGNRVK57Yql6vDgwzFJOgFAA=|000027235|PATENTE|Normal| MÉTODO PARA PRODUCIR ETANOL A PARTIR DE VINAZA ENRIQUECIDA CON CELULOSA SEPARADA DE ENVASES MULTICAPAS|UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.C.|MORAL|Nathalia Montserrat CUELLAR MILIAN|Francisco Fernando Eugenio URRUTIA ALBISUA|UUAF600912HPLRLR07|

Sello Digital

mKh0wcVTZwUg0+B9O0xTNAJGcsO//MuqrBG2p9VUqAY=

Anexo(s)

Hoja anexa a la solicitud ID: 27235 De Fecha: 20/04/2020 02:36:26

Lista de Solicitantes

Solicitante 2

- Causahahiente
- Nombre: SUMINISTROS, CONSULTORÍA Y PROYECTOS S.A. DE C.V.
- RFC: SCP150326H53
- Nacionalidad: MÉXICO
- Domicilio: Calle EJIDO, Ext. 5982, Col. SAN BALTAZAR LINDA VISTA, C. P. 72550, Tel. 2212179232, E-mail s.mendoza@sucopsa.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Lista Inventores/Diseñadores

Inventor/Diseñador 2

- Nombre: Genoveva ROSANO ORTEGA
- CURP: ROOG750918MDGSRN08
- Nacionalidad: MÉXICO
- Domicilio: Calle CENTENARIO, Ext. 24, Col. REAL DEL MONTE, C. P. 72060, Tel. 2222121477, E-mail genoveva.rosano@upaep.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Inventor/Diseñador 3

- Nombre: Francisco Javier SÁNCHEZ RUÍZ
- CURP: SARF810810HMNNZR01
- Nacionalidad: MÉXICO
- Domicilio: Calle CONSTITUCIÓN, Ext. 165, Int. A, Col. MORELOS, C. P. 58030, Tel. 2215307720, E-mail franciscojavier.sanchez@upaep.mx

Contacto: Arenal #550, Pueblo Santa María Tepepan, Xochimilco, 16020, Ciudad de México. Teléfono: (55) 53340700 www.gob.mx/impi

Instituto Mexicano de la Propiedad Industrial

- Población, Estado y País: MORELIA, MICHOACÁN, MÉXICO

Inventor/Diseñador 4

- Nombre: Carlos Arturo VEGA LEBRÚN
- CURP: VELC690726HVZGBR04
- Nacionalidad: MÉXICO
- Domicilio: Calle CENTENARIO, Ext. 24, Col. REAL DEL MONTE, C. P. 72060, Tel. 2225800893, E-mail carlosarturo.vega@upaep.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Inventor/Diseñador 5

- Nombre: Juan Francisco MÉNDEZ DÍAZ
- CURP: MEDJ780228HPLNZN05
- Nacionalidad: MÉXICO
- Domicilio: Calle IGNACIO MEJIA, Ext. 14, Col. LOMAS DE LORETO, C. P. 72260, Tel. 2227695327, E-mail juanfrancisco.mendez@upaep.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Inventor/Diseñador 6

- Nombre: Saúl Abel MENDOZA MARTÍNEZ
- CURP: MEMS790901HPLNRL02
- Nacionalidad: MÉXICO
- Domicilio: Calle ANTONIO CASO, Ext. 1612, Int. 1, Col. CIUDAD SATÉLITE, C. P. 72320, Tel. 2212179232, E-mail s.mendoza@sucopsa.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Inventor/Diseñador 7

- Nombre: René MENDOZA MARTÍNEZ
- CURP: MEMR890403HPLNRN04
- Nacionalidad: MÉXICO
- Domicilio: Calle EJIDO, Ext. 5949, Int. 2, Col. SAN BALTAZAR LINDA VISTA, C. P. 72550, Tel. 2212179264, E-mail r.mendoza@sucopsa.mx
- Población, Estado y País: PUEBLA, PUEBLA, MÉXICO

Número de Páginas Manifestadas

- Número de Páginas: 47

FORMATO ELECTRÓNICO DE PAGOS POR SERVICIOS

NUMERO DE FOLIO 10045568382

INDUSTRIAL

PERIFÉRICO SUR 3106, COL JARDINES DEL PEDREGALO DEL ALVARO OBREGON, CP 01900, CIUDAD DE MÉXICO

RFC: IMP-931211-NE1

TRÁMITE EN LÍNEA: 168494

TRAMITE EN LINEA: 168494	10045566362	REGIM	EN FISCAL(603	PERSONAS N	ORALES CON FIN	NES NO LUCRATIVO	s C
CONCEPTO		CANTIDAD U. M.	ARTÍCULO	PRECIO UNITARIO	IMPORTE TARIFA	DESCUENTO	, 202
Por la presentación de una solicitud de patente y su términos del artículo 43 de la Ley, así como por los 38 del mismo ordenamiento.	us anexos de hasta 30 hojas en s servicios a que se refiere el artículo	1 Servicio	1a	\$4,550.00			
Por el concepto a que se refiere el artículo 1a, por c	cada hoja adicional	17 Servicios	1aBIS	\$61.00	\$518.50	\$518.50	
							5
							REPR
							2000
							XX
							NO A
							UTOF
							0ZAD
							A DE
							ESTE
							MOS
							PROB
							MANTE
							8
							STIT
							SYEC
							NDE
PUE - PAGO EN UNA S	OLA EXHIBICIÓN						LA REPRODUCCIÓN NO AUTORIZADA DE ESTE COMPROBANTE CONSTITUYE UN DEUTO EN
		-			TOTAL TARIFA	\$2,793.50) [<u>5</u>
APLICA DESCUENTO - UNIVERSIDAD ANOTACIONES:)				DESCUENTO I.V.A	\$2,793.50 \$446.96	- 1=
ANOTAGIONES.					SUBTOTAL	\$3,240.46	19
				A	CTUALIZACIÓN	\$0.00	
TRES MIL DOSCIENTOS CUARENTA PESOS 46/100	MN				RECARGOS OTAL A PAGAR	\$0.00 \$3,240.4 6	
						Ψ5,2-70.40	0

Este documento no es un comprobante fiscal.

Su factura estará generada dentro de los tres días hábiles posteriores a su pago.
El formato de pago FEPS sin factura es válido para presentar el trámite que ampara ante el IMPI.
Si tiene algún problema para descargar su factura electrónica,
envíe los folios FEPS correspondientes al siguiente correo electrónico:

buzon@impi.gob.mx

Hubo problemas al generar el sello electrónico

DATOS DEL TITULAR O SOLICITANTE

NOMBRE: UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.C.

DIRECCIÓN: Calle. 21 SUR No.Ext. 1103 No.Int. , Col. BARRIO DE SANTIAGO, CP.72410, PUEBLA, PUEBLA, MX

RFC: UPA761015KQ0

BANCO: Bancomer

CONVENIO: 976075

FECHA DE OPERACION: 20/04/2020 02:16:25 FOLIO: 144470892000000000000211741

Ciudad de México, 20/04/2020

Solicitud de: PATENTE

Bajo Protesta de decir verdad declaro, con respecto al beneficio señalado en la Cuarta Disposición General de la Tarifa por los servicios que presta el Instituto Mexicano de la Propiedad Industrial, y con fundamento en la fracción III de dicha Disposición, que me encuentro en el supuesto abajo señalado, por lo que solicito el 50% de descuento de la Tarifa establecida para el Artículo 1a, 1aBIS.

Hago la presente declaración en cumplimiento de dicha disposición, según el Acuerdo por el que se da a conocer la Tarifa por los servicios que presta el Instituto Mexicano de la Propiedad Industrial, publicado en el Diario Oficial de la Federación con fecha 23 de agosto de 1995.

Micro y Pequeña Empresa	()
Instituto de Investigación Científica y Tecnológica del Sector Público	()
Universidad	()	X)
Diseñador/Inventor Independiente	()
ATENTAMENTE:		

Nombre: Francisco Fernando Eugenio URRUTIA ALBISUA por poder de UNIVERSIDAD POPULAR AUTÓNOMA DEL ESTADO DE PUEBLA A.C.

Instituto Mexicano de la Propiedad Industrial

DIRECCIÓN DIVISIONAL DE ASUNTOS JURÍDICOS SUBDIRECCIÓN DIVISIONAL DE REPRESENTACIÓN LEGAL

EXPEDIENTE: RGP-DDAJ-21065 OFICIO: SDRL.2012.0753

ASUNTO: Constancia de inscripción en el Registro

General de Poderes.

REF.: Escrito recibido el 18 de mayo de 2012, bajo el

folio 779.

México, D.F. a 1 de junio de 2012.

C. FRANCISCO FERNANDO EUGENIO URRUTIA ALBISUA 21 SUR 1103 COLONIA SANTIAGO C.P. 72410 PUEBLA PUEBLA PRESENTE

En contestación a su escrito de referencia, se le comunica que para los fines declarativos de registro, con fundamento en los artículos 181 fracción II de la Ley de la Propiedad Industrial, así como 16 fracción I de su Reglamento y de conformidad a las formalidades y facultades contenidas en la carta poder que obra en el expediente citado al rubro, se expide la presente constancia de inscripción en el Registro General de Poderes de este Instituto, del poder conferido al C., FRANCISCO FERNANDO EUGENIO URRUTIA ALBISUA, por la persona moral, UNIVERSIDAD POPULAR AUTONOMA DEL ESTADO DE PUEBLA A.C.; para efecto de tramitar solicitudes de patentes, registros, o la inscripción de licencias o sus transmisiones quedando registrado con el número RGP-DDAJ-21065 a partir del 18 de mayo de 2012.

El ejercicio de las facultades que constan en el poder que se registra se encuentra limitado y sujeto a las formalidades y disposiciones de la Ley de la Propiedad Industrial y su Reglamento, que para cada trámite establece.

Asimismo, se hace de su conocimiento que este Organismo al inscribir el documento antes indicado, deja a salvo los derechos de terceros para impugnar su registro y, en su caso, proceder a la cancelación de la inscripción.

El presente se signa además, con fundamento en les artículos 6º fracción XXII, 7 bis 1, 7 bis 2 y 181 de la Ley de la Propiedad Industrial y Capítulo IV de su Reglamento, publicados en el Diario Oficial de la Federación el 2 de agosto y 23 de noviembre de 1994, respectivamente; 1º, 2º, 3º fracción V, inciso i), subíndice i), 4º, 5º, 11 fracción II y su último párrafo, así como 20 fracción V del Reglamento del Instituto Mexicano de la Propiedad Industrial, publicado en el Diario Oficial de la Federación el 14 diciembre de 1999, reformado y adicionado el 15 y 24 de julio de 2004 y el 7 de septiembre de 2007 por publicación en el referido órgano de difusión oficial; 1º, 2º, 3º, 4º, 5º fracción V, inciso i), subíndice i), 15 fracción II y su último párrafo, 24 fracción V y 38 de su Estatuto Orgánico, así como 1º y 12 inciso e) y su penúltimo párrafo del Acuerdo que Delega Facultades en los Directores Generales Adjuntos, Coordinadoro, Directores Divisionales, Titulares de las Oficinas Regionales, Subdirectores Divisionales, Coordinadores Departamentales y otros Subalternos del instituto Mexicano de la Propiedad Industrial, publicados en la misma fuente informativa el 27 y 15 de diciembre de 1999, reformados, adicionados y aclarados mediante publicaciones del 29 de julio, 4 de agosto de 2004 y 13 de septiembre de 2007, respectivamente.

ATENTAMENTE EL SUBDIRECTOR DIVISIONAL DE REPRESENTACIÓN LEGAL

CARLOS RAUL SANDOVAL FERNÁNDEZ

MÉTODO PARA PRODUCIR ETANOL A PARTIR DE VINAZA ENRIQUECIDA CON CELULOSA SEPARADA DE ENVASES MULTICAPAS

CAMPO TÉCNICO

La presente invención pertenece al campo técnico de la química. Particularmente, al campo técnico de los procesos para separación y aprovechamiento de desechos y, aún más particular, se refiere a un método para producir etanol a partir de mezcla de vinaza enriquecida con celulosa, obtenida a partir de envases multicapas.

ANTECEDENTES

A nivel mundial, especialmente en las grandes ciudades el manejo de los residuos sólidos ha representado un gran problema debido, entre otras cosas, a los altos volúmenes de residuos sólidos generados por los usuarios; cuando el manejo de éstos no es el adecuado, puede afectar la salud de los ciudadanos y al medio ambiente. Ante este escenario surge la necesidad de proveer nuevas técnicas para el tratamiento de los desechos y, en su caso, su reciclaje para la producción de nuevos productos, particularmente etanol. Para el caso de la presente memoria descriptiva, el problema se enfoca particularmente a dos materiales de desecho, por una parte, los envases multicapa y por la otra a las vinazas con la obtención de un nuevo producto que es etanol.

25

30

5

10

15

20

El envase multicapa es mejor conocido como envase Tetra Pak o Tetra Brik, se introdujo al mercado en 1963, como resultado de una larga investigación para sustituir el envase con forma de tetraedro. Debido a que en cada envase se encuentran 21g de cartón, 5.8g de polietileno y 1.4g de aluminio, dispuestos en 5 capas, 3 de polietileno, 1 de aluminio y 1 de cartón, su manejo y tratamiento es

complejo y costoso, y no en todos los casos se logra separar eficientemente a los materiales.

Hoy en día se conocen diversas formas para reciclar los envases, tal es el caso descrito en la solicitud mexicana MX/a/2014/001722, la cual se refiere a un proceso para la obtención de material compuesto por aglomerado de envases asépticos, que comprende las siguientes etapas: a) prensar granos de no más de 5mm de diámetro de envase aséptico sobre una matriz a una presión de entre 3T a 15T, de acuerdo a la forma que se requiera; y b) someter a una compresión térmica durante aproximadamente 40 minutos a una temperatura promedio de 300 °C sin quitar la presión antes lograda sobre los granos de envase aséptico, para derretir el polietileno del envase aséptico y unir el papel y aluminio.

5

10

15

20

25

30

En otros casos el reciclaje del los envase multicapa se enfocan a fabricar un aglomerado parecido a la madera, con el cual se pueden fabricar muebles, revestimientos, sin embargo, en la actualidad, la inclinación del reciclaje está encaminada a separar los componentes de los envases asépticos como es el caso del aluminio y el papel, o bien para generar energía en el caso del polietileno.

La patente europea EP 0801168 (B), propone un método y aparato para recolectar capas individualmente de una película laminada que contiene muchas capas hechas de diferentes materiales, pelando o separando las capas, una de la otra. La película laminada que tiene una pluralidad de capas, hechas de diferentes materiales, se tritura en una pluralidad de fragmentos a procesar; y los fragmentos a procesar se pelan o separan según el tipo de capa aplicando una fuerza de impacto por fricción a cada uno de los fragmentos a procesar. Posteriormente, las capas peladas o separadas obtenidas en el paso de pelado y separación se someten a un paso de clasificación de la fuerza del viento. Las capas recogidas en el estado mixto se separan unas de otras, y se recogen individualmente. Sin embargo, el método va dirigido únicamente a la separación de capas del envase para obtener las fibras por separado.

Si bien, los envases multicapa son 100% reciclables gracias a su composición de materiales reciclables como el aluminio, cartón y polietileno, el reciclaje a gran escala es costoso ya que comprende una etapa de separación de los materiales, lo cual es sumamente complicado, por otro lado el reciclaje, lo cual se puede apreciar a fondo en los diversos documentos del estado de la técnica, que en su mayor parte no requiere una separación completa del material, más bien se utiliza en conjunto para elaborar o reforzar materiales para la construcción, con propiedades mecánicas y acústicas mejoradas. Por su parte los procesos de separación involucran temperaturas y trabajos mecánicos, que requieren de máquinas especiales que complican su implementación y acceso y, por su puesto, elevan los costos del proceso.

Por otra parte, otro desecho industrial altamente contaminante son las vinazas, éstas son el residuo final de la fermentación y destilación del mosto de diversos cultivos (sorgo, maíz, cebada, remolacha, agave, caña de azúcar, etc.) en la industria de la producción de alcohol. Las vinazas son un líquido de olor dulce y de color marrón o café oscuro, son altamente contaminantes debido principalmente a su gran carga de materia orgánica disuelta y en suspensión, por su elevada concentración de fenoles las cuales son considerados como recalcitrantes por su alta dificultad para degradarse, conductividad y elevada dureza lo cual indica que es un residuo potencialmente tóxico para la vida acuática si se realiza su vertimiento sin el tratamiento apropiado. En producción se obtienen entre 12 y 15 litros de vinaza por cada litro de alcohol (Conadesuco, 2016). El tipo de vinaza depende directamente del proceso de obtención de alcohol y del tipo de producto agrícola que se utiliza para preparar el mosto a través de fermentación fermentado.

Las aguas residuales de las destilerías imponen grandes cargas contaminantes que deberán abatirse en las plantas de tratamiento de aguas, debido a los altos niveles de color café, demanda química de oxígeno (DQO), la demanda bioquímica de oxígeno (DBO5) a los 5 días y, de los sólidos disueltos y en suspensión. En este sentido, se conocen muchos métodos encaminados al

tratamiento de las vinazas antes de su descarga para disminuir los contaminantes presentes, además de otras técnicas que permiten aprovecharlas para elaborar alimentos para peces, vinagre, o más complejos como el uso de la vinaza para sacarificación/fermentación de biomasas lignocelulósicas, incluso para obtener dispersantes, entre otros.

Tal es el caso de la solicitud mexicana JL 2003000040 (A) que se refiere a un proceso y equipo para el tratamiento de vinaza residual generada en la industria del tequila, en la etapa de destilación y destrozamiento, con el objeto de eliminar los contaminantes contenidos en la vinaza para recuperar el agua por medio de vapor de agua. Esta invención también se refiere a un intercambiador de calor y a una evaporadora de vinaza novedosos que se utilizan dentro del proceso para lograr que el vapor generado por éste tenga calidad 100 % vapor de agua, obteniendo así un ahorro de agua al utilizar el vapor de nuevo en la línea de proceso, eliminando descargas residuales en canales o ríos. Los sólidos recuperados del proceso pueden ser aprovechados para elaborar subproductos con alto contenido en fibra, azúcar, proteína o como mezcla para alimento de ganado, biofertilizante u obtención de alcoholes etílicos.

Adicionalmente, se conoce la solicitud internacional WO 2013058761 (A), la cual presenta un sistema de tratamiento de aguas residuales que se utiliza para reducir los niveles de contaminantes en las corrientes de desechos de vinaza. El sistema es particularmente eficaz en la reducción de los valores de sólidos suspendidos totales (TSS), sólidos disueltos totales (TDS), demanda biológica de oxígeno (DBO) y demanda química de oxígeno (DQO) por debajo de los límites aceptables. El sistema de tratamiento de aguas residuales incluye los componentes interconectados de una unidad de eliminación de sólidos suspendidos gruesos, una unidad de filtración gruesa, una unidad de ultrafiltración, una unidad de nanofiltración y una red de ósmosis inversa. La producción de dicho sistema puede cumplir con los estándares de agua potable.

La solicitud mexicana MX 2017014868 (A) provee un proceso de obtención de un vinagre a partir del tratamiento de vinazas de agave y miel de agave, el cual comprende una etapa de filtración para eliminar sólidos, esterilización y evaporación/concentración, adición de ácido acético, agua, conservadores y azúcares, edulcorantes provenientes del agave.

En la patente mexicana MX 348143 (B) se describe una alternativa para resolver en forma completa los problemas existentes de vinaza, en particular en la producción de bioetanol de materias primas vegetales, se propone un método para producir alimentos de crustáceos del género arteria (camarón de salmuera) o copépodos (crustáceos de pies de remos) o de daphnia (pulgas de agua) o de miembros en forma de rotíferas o protozoos (protozoarios) estando caracterizado este método en que los cultivos de crustáceos /microbios se alimentan por lo menos parcialmente con vinaza, preferiblemente con vinaza delgada, en particular procedente de la producción de bioetanol, y con las levaduras contenidas en la vinaza. Con relación a lo anterior, se propone igualmente que el calor de proceso producido durante la producción de vinaza, en particular en el transcurso de la producción de bioetanol, se aprovecha para calentar el agua para el cultivo de crustáceos/microbios y/o algas a fin de utilizar el contenido de energía térmica de la vinaza de una manera útil.

Derivado del análisis realizado al estado de la técnica no se encontró algún documento que divulgue un método que involucre la aplicación de vinazas en un proceso para separar los distintos materiales de los envases multicapas. Debe destacarse que el método propuesto en esta invención, no es derivable de manera obvia ni sugerido por las enseñanzas del estado de la técnica, esto en virtud que los métodos para el tratamiento de la vinaza están encaminados a disminuir los contaminantes presentes, además de otras técnicas que permiten aprovecharlo para elaborar alimentos para peces, vinagre, o más complejos como el uso de la vinaza para sacarificación/fermentación de biomasas lignocelulósicas, incluso para obtener

dispersantes, entre otros. Sin embargo, hasta el momento no es conocido su uso para separar materiales de envases multicapas.

Si bien, los envases multicapa son reciclables en su totalidad, gracias a su composición de materiales reciclables como el aluminio, cartón y polietileno, el reciclaje a gran escala es costoso ya que comprende una etapa de separación de los materiales, lo cual es sumamente complicado, por otro lado el reciclaje, lo cual se puede apreciar a fondo en los diversos documentos del estado de la técnica, que en su mayor parte no requiere una separación completa del material, más bien se utiliza en conjunto para elaborar o reforzar materiales para la construcción, con propiedades mecánicas y acústicas mejoradas. Por su parte los procesos de separación involucran temperaturas y trabajos mecánicos realizados por máquinas especiales, que complican su implementación y acceso.

También se tiene conocimiento de la producción de etanol a partir de desechos con alta carga de sólidos, algunas de estas propuestas, son descritas en el estado de la técnica, por ejemplo, en la solicitud japonesa JP 2019106954 (A) se proporciona un método para la producción de bioetanol, utilizando una biomasa lignocelulósica como material de inicio, capaz de mejorar la concentración de etanol, y reducir una carga de destilación, sin requerir equipo especial, mediante la solubilización de la celulosa por hidrolisis enzimática. La invención está configurada de modo que, cuando un residuo sólido de una biomasa celulósica, de la que se elimina la hemicelulosa, se mezcla con una solución acuosa que incluye una enzima hidrolítica de celulosa, la concentración de etanol se controla entre un 3 a un 6% en masa. Por lo tanto, se puede prevenir el crecimiento de microorganismos diversos durante la hidrólisis de la celulosa y se puede aumentar la concentración de etanol cuando una solución sacarificada se somete a fermentación de etanol. Como resultado, se reduce la carga de destilación.

En la solicitud china CN 109929882 (A) se divulga un proceso para producir etanol mediante la fermentación conjunta de celulosa y carbohidratos como materias primas. El proceso incluye un pretratamiento de celulosa, hidrólisis de celulosa, licuefacción de materias primas de carbohidratos, mezcla de las materias primas y fermentación con la adición de microorganismos fermentativos. El etanol se produce co-fermentando la materia prima de celulosa y sacáridos, pero durante la fermentación se produce una sustancia inhibidora, sin embargo, en el proceso de pretratamiento de la celulosa, se reduce el efecto de inhibición de la sustancia de inhibición sobre la fermentación y con ello se aumenta la producción de etanol a partir de celulosa. Al mismo tiempo, la celulosa reemplaza, en parte, a la materia prima de sacáridos, con esto se reduce la demanda de la materia prima de sacáridos en la industria de la fermentación, y por lo tanto se evita que la industria del etanol ocupe una gran cantidad de recursos de granos. La materia prima de celulosa y la materia prima de sacárido se fermentan de manera que se puede mejorar el rendimiento total de etanol y aumentar la tasa de utilización de la materia prima de celulosa.

5

10

15

20

25

30

Aún otro documento relacionado, es la solicitud china CN 109652467 (A) que se refiere a un método para producir etanol usando bagazo. El método comprende las etapas de pretratamiento primario del bagazo, pretratamiento secundario del bagazo, hidrólisis de la pulpa y, finalmente, el proceso de fermentación. El método utiliza los hongos que ocasionan la "pudrición blanca" y un nutriente especial A para llevar a cabo el pretratamiento primario del bagazo, esto puede degradar la lignina de la celulosa y puede reducir la defensa de la lignina frente a la celulasa; las uniones entre la celulosa se rompen, de tal modo que la celulosa queda altamente expuesta a celulasas y la xilanasas, y la celulosa del bagazo se hidroliza más completamente. Después de los dos pretratamientos del bagazo, la lignina en el bagazo puede degradarse completamente, la celulosa en el bagazo se hidroliza más fácilmente por la celulasa y la xilanasa, la tasa de utilización de celulosa es alta, obteniendo una fracción de volumen de etanol de 13.7-14.2%.

Sin embargo, el estado de la técnica no divulga o describe ningún método para producir etanol a partir de celulosa separada de materiales de envases multicapas por vinazas derivadas de la industria de la producción de alcohol, en particular de la industria productora de destilados de agaváceas y de insumos derivados, por ejemplo, de la caña de azúcar. Si bien es ampliamente conocido y descrito en el estado de la técnica diversos procesos para obtención de etanol a partir de materiales celulósicos mediante técnicas en biotecnología, estos han enfocado su esfuerzo a mejorar diversos aspectos de los microorganismos utilizados, enzimas, entre otros. El documento más cercano del estado de la técnica corresponde a la solicitud de patente china CN109652467 (A), el cual divulga la producción de etanol a partir de un desperdicio agroindustrial como el bagazo, sin embargo, no describe ni sugiere un proceso tan complejo que parta de la separación de envases multicapa para la obtención de etanol utilizando para tal fin, otro desperdicio como las vinazas.

Si bien, los envases multicapa son 100% reciclables gracias a su composición de materiales reciclables como el aluminio, cartón y polietileno, el reciclaje a gran escala es costoso ya que comprende una etapa de separación de los materiales, lo cual es sumamente complicado, por otro lado el reciclaje, lo cual se puede apreciar a fondo en los diversos documentos del estado de la técnica, que en su mayor parte no requiere una separación completa del material, más bien se utiliza en conjunto para elaborar o reforzar materiales para la construcción, con propiedades mecánicas y acústicas mejoradas. Por su parte los procesos de separación involucran temperaturas y trabajos mecánicas realizados por máquinas especiales que complican su implementación y acceso.

La propuesta de la invención proporciona un método encaminado al aprovechamiento de dos desperdicios que no ha sido divulgado ni sugerido con anterioridad.

OBJETO DE LA INVENCIÓN

De acuerdo con lo anterior, la presente invención esta dirigida a proveer una solución integral que involucra el tratamiento y aprovechamiento de dos diferentes materiales de desecho para ser aprovechados nuevamente y con ello producir etanol y reducir la carga contaminante que cada uno conlleva. Por lo tanto, el objeto principal de protección está dirigido a proporcionar un método que utiliza la celulosa separada de los envases multicapas para la producción de etanol.

Otro objeto de la presente invención es proporcionar un método para reciclar envases multicapas.

Otro objeto de la presente invención es proporcionar un método que utiliza vinazas para separar los distintos materiales de los envases multicapas.

Otro objeto más de la presente invención es proporcionar un método que utiliza vinazas para separar la celulosa a partir de los envases multicapas.

Otro objeto más de la presente invención es proporcionar un método que utiliza vinazas para separar la celulosa a partir de los envases multicapas, sin requerir de maquinaria muy compleja o costosa, ni de altas temperaturas, disminuyendo así los altos costos del reciclaje de los envases multicapas.

Los objetivos de la presente invención antes referidos y aun otros no mencionados, serán evidentes a partir de la descripción de la invención y las figuras que con carácter ilustrativo y no limitativo la acompañan, que a continuación se presentan.

5

15

20

BREVE DESCRIPCIÓN DE LAS FIGURAS

La figura 1 muestra la composición y el orden de las capas que conforman a los envases multicapa.

5

La figura 2 muestra un diagrama esquemático de una planta para la producción de etanol, que comprende la separación de los distintos materiales del envase multicapa y la fermentación de la celulosa para la producción de etanol.

10 La figura 3 muestra un análisis de la calidad del etanol obtenido mediante la presente invención. En esta se muestra un cromatograma de determinación de impurezas de etanol practicado a una muestra obtenida con el método propuesto en la presente invención.

DESCRIPCIÓN DE LA INVENCIÓN

15

20

25

La presente invención se refiere a un método y una planta para producir etanol a partir de vinaza enriquecida con celulosa separada de envases multicapas. El método propuesto permite brindar una solución al tratamiento de ambos desperdicios o residuos, al tiempo que permite el reciclaje de envases multicapa. Un residuo es material o producto desechado y que se encuentra en estado sólido, semisólido, líquido o gas contenido en recipientes o depósitos. Estos pueden ser susceptibles a ser valorizados o requieren de algún proceso de tratamiento para su disposición final conforme a lo establecido en la legislación. Los residuos sólidos, se clasifican de acuerdo a sus características y orígenes en tres grupos: residuos sólidos urbanos (RSU), residuos de manejo especial (RME, generados en los procesos productivos y que son producidos por grandes generadores de RSU) y residuos peligrosos (RP).

El incremento de la producción de RSU es proporcional al aumento poblacional y al estilo de vida (mayor consumo de bienes y servicios). Por lo que los temas como la recolección, manejo y disposición final son de mayor importancia, ya

que una mala disposición puede provocar focos de contaminación o infección para la población.

El envase multicapa es un envase para contener bebidas y/o alimentos, cuya finalidad es la conservación de la frescura en los mismos. El envase inicialmente fue concebido a partir de un rollo de papel recubierto con plástico, que una vez lleno se sellaba por encima del nivel del líquido (Tetra Pack, 2019). Actualmente, estos envases han evolucionado y mejorado tecnológicamente a partir de la sobre posición de capas de cartón, aluminio y polietileno.

10

15

20

25

30

5

El propio proceso de fabricación de los envases multicapa, que garantiza su hermeticidad, y resistencia, hacen de este un complejo sistema de gran utilidad, pero de un solo uso, que dan al empaque las características principales versus los envases tradicionales que son: ligereza, manejabilidad, facilidad de transportación, no requieren cadena de frío hasta una vez abiertos y se abren y cierran varias veces. En la figura 1 se muestra la composición y el orden de las capas en los envases multicapa utilizada actualmente, dada por Tetrapack (2019).

Por su parte, las vinazas provienen de la destilación del mosto de productos agrícolas con alto contenido de almidones como el maíz, sorgo y trigo, las frutas con altos contenidos de azúcares como la piña, la manzana y la uva, la caña de azúcar y los residuos agrícolas; se obtienen de la fermentación y destilación de los mostos; son el principal residuo orgánico altamente contaminante en la obtención de alcohol. Es un líquido de color café con un pH ácido, olor dulce, presencia de compuestos fenólicos y alto contenido de materia orgánica disuelta y en suspensión. Este residuo proveniente de la destilería, puede variar de acuerdo con la materia prima utilizada para la fermentación (Ibarra-Camacho, 2017).

A continuación, en las siguientes tablas y gráficos (elaboración propia) se refiere la composición química general de las vinazas según el producto destilado:

Tabla 1. Características generales físico-químicas de las vinazas del agave (Ibarra-Camacho, 2017)

Característica	Unidades	Promedio
рН	U	3.95
Sólidos Totales (ST)	mg/L	42 877.5
Sólido Totales Fijos (STF)	mg/L	9 432.5
Sólidos Totales Volátiles (STV)	mg/L	33 430
DQO	g/L	51.53
Nitrógeno total	%	0.73

Tabla 2. Composición química general de una vinaza en datos porcentuales (Leticia, 2012)

Compuestos	%
Alcanos y alquenos	1.94
Aromáticos	0.92
Ácidos grasos	0.4
Ésteres	0.03
Lactona	3.09
Ligninas	0.07
Compuestos de nitrógeno	1.99
Poli aromáticos	0.05
Fenoles	2.34
Polisacáridos	84.5

Tabla 3. Análisis de metales presentes en vinaza.

Metal	Sodio	Potasio	Cobalto	Cobre	Hierro	Manganeso	Molibdato	Vanadio	Zinc
mg/L	45.61	67.91	0.045	0.567	33.79	2.232	0.011	0.028	0.591

Tabla 4. Rango en la composición química de las vinazas

Compuesto	mg/L
Ácido Láctico	110
Ácido Acético	1930-2500
Ácido Propiónico	40-30
Ácido Butirico	20-30
Etanol	2450-3720

Tabla 5. Rango en la composición química (compuestos mayoritarios) de la vinaza de la producción de alcohol etílico

Compuesto	mg/L
Sodio	45.61
Potasio	67.91
Nitrógeno	330-480
ácido fosfórico, P₂O₅	90-610
K₂O	2100-3400
CaO	570-1460
MgO	330-580
SO ₄ ² ·	1500
Ácido Piroglutámico	167755.5
Ácido Itacónico	94553.1
Ácido Fumárico	39561.3
3 metoxi 4 hidroxifenilglicerol	54901.8
Ácido p-hidroxi-benzoico	48801.6
Ácido Palmitico	34567.8

Como se indicó anteriormente las aguas residuales de la destilería imponen altas cargas contaminantes en las plantas de tratamiento de aguas residuales debido a los altos niveles de color, la demanda química de oxígeno (DQO), la demanda

biológica de oxígeno (DBO) y los sólidos en suspensión. En este sentido, se conocen muchos métodos encaminados al tratamiento de las vinazas antes de su descarga para disminuir los contaminantes presentes, además de otras técnicas que permiten aprovecharlo para elaborar alimentos para peces, vinagre, o más complejos como el uso de la vinaza para sacarificación/fermentación de biomasas lignocelulósicas, incluso para obtener dispersantes, entre otros. Sin embargo, hasta el momento no es conocido su uso para separar materiales de envases multicapas, particularmente para la obtención de celulosa y su utilización en la producción de etanol.

Si bien, los envases multicapa son 100% reciclables gracias a su composición de materiales reciclables como el papel aluminio, cartón y polietileno, el reciclaje a gran escala es costoso ya que comprende una etapa de separación de los materiales, lo cual está sumamente tecnificado y, por lo tanto, complicado, por otro lado el reciclaje, lo cual se puede apreciar a fondo en los diversos documentos del estado de la técnica, que en su mayor parte no requiere una separación completa del material, más bien se utiliza en conjunto para elaborar o reforzar materiales para la construcción, con propiedades mecánicas y acústicas mejoradas. Por su parte los procesos de separación involucran temperaturas y trabajos mecánicas realizados por máquinas especiales que complican su implementación y acceso.

20

25

30

5

10

15

El método para producir etanol a partir de vinaza enriquecida con celulosa separada de envases multicapas, comprende las siguientes etapas y parámetros o condiciones:

a) Los residuos sólidos valorizables tales como el cartón, papel, plásticos, metales, envases multicapa, entre otros, son recolectados y depositados en una tolva, que a su vez alimenta a una banda de separación (101), en la cual, a través de sensores de densidad, se separan los envases multicapa y otros (todo tipo de papel y cartón como lo es cartón de huevo, Kraft y revuelto, del resto de los residuos sólidos:

b) La vinaza, y los envases multicapa opcionalmente enriquecidos con cartón Kraft, de huevo o papel revuelto a los que se denominarán como "enriquecedores de celulosa" en una relación másica de 1:5 de envases multicapa y los enriquecedores de celulosa.

5

c) Mezclar en tanque-tolva abierto (103), en una proporción de 25 a 30% de vinaza y de 70 a 85% de envases multicapa y otros enriquecedores de celulosa, manteniendo un régimen de mezclado de entre 400 a 1200 rpm, y una temperatura de reacción de entre 50 a 90°C, durante 1 a 3hrs;

10

En una modalidad, el régimen de mezclado es de 800 rpm, la temperatura de reacción es de 70°C durante 2 horas.

15

Como el técnico en la materia podrá imaginar, cualquier tanque-tolva es apropiado para este propósito siempre y cuando presente los mecanismos apropiados para el control de la agitación-mezclado y control de temperatura.

20

Así mismo, como el técnico en la materia podrá imaginar, si la vinaza se utiliza en un corto tiempo, después de obtenerse, no necesita ninguna condición especial de almacenamiento, sin embargo, si la vinaza se almacena por varios días o más tiempo, entonces es recomendable almacenar la vinaza en un contenedor apropiado (102), a una temperatura de entre 40 a 100 °C, con aireación con el propósito de evitar condiciones sépticas y la sedimentación de sólidos en el fondo.

25

d) La mezcla heterogénea de envase multicapa con enriquecedores de celulosavinaza, se bombea al sistema de cribas (104) donde se separa la vinaza, con celulosa disuelta o en suspensión de las demás capas del envase (polietileno y aluminio) por diferencia de densidades y gravedad;

- e) El filtrado de los remanentes de la separación de sólidos en las cribas se lleva a cabo mediante un sistema de filtros (106) para su deshidratación, en esta etapa del proceso se recupera la celulosa.
- Como el técnico en la materia podrá imaginar, cualquier tipo de filtros son apropiados, siempre y cuando permitan recuperar la celulosa, evidentemente, la elección estará influenciada por la capacidad y eficiencia de filtrado, costos, etc. en una modalidad preferida se utilizan filtros de mangas o filtros prensa.
- f) Los sólidos recuperados en el cribado (aluminio y polietileno) son separados por diferencia de densidades y secados en el ciclón secador (105), para evaporar el agua.
- g) La vinaza enriquecida con celulosa proveniente del proceso de separación de los envases multicapa y enriquecedores de celulosa es llevada a fermentación (111) a una temperatura de 20 a 45 °C preferentemente 30°C y un tiempo de residencia de 12 horas a 1 mes, preferentemente 72 horas;
- En una modalidad preferente de la invención, la vinaza puede ser enriquecida con celulosa proveniente de otros desechos sólidos urbanos como, por ejemplo, cartón, papel, entre otros.
 - h) La vinaza fermentada pasa a un sedimentador de gravedad (112) para retirar los sólidos sedimentables y obtener el clarificado. El tiempo de retención en esta unidad va de 1 a 60 minutos, preferentemente alrededor de 10 a 30 minutos y aún más preferentemente de 15 minutos;

30

 i) El clarificado es llevado a al menos una columna de separación por lotes (batch)
 (113) para recuperar el etanol de dicha mezcla, esto para el desplazamiento del azeótropo presente, a condiciones de entre 75 a 95 °C y 1 atm de presión; j) Conducir la mezcla etanol-agua obtenido columna de separación multi-etapas (114) donde se realiza la destilación con base en la calidad del etanol comercial requerido según las NOM-142-SSA1/SCFI-2014 para fermentados y no fermentados y de la NOM-016-CRE-2018 (ASTM-D5501) para etanol anhidro, a una presión de operación de 0.5 a 1 atm y una temperatura de 50 a 110°C, en una modalidad preferida la destilación opera a 0.9 atm y 75°C. La columna tiene la finalidad de la obtención de un destilado en el domo de la columna (etanol) y un fondo (colas).

Dicha columna de separación multietapas (114) tiene un control de temperatura donde se realiza la destilación, comprende de un reboiler (115) y un condensador (116) para separar los volátiles en el domo de la columna; los pesados en el fondo de la misma. En una modalidad preferencial, ésta columna de separación (114) está configurada para trabajar a una presión constante de 0.95 atm y una temperatura entre 60 a 90°C; en donde en las etapas intermedias se realiza la alimentación a una temperatura entre 70 a 90 °C, en las etapas superiores (condensador 116) la temperatura se controlará entre 70 a 80°C y en las etapas inferiores considerando el reboiler (115) se fija a una temperatura de entre 60 a 95°C:

20

15

5

10

k) El destilado es conducido a un tanque de sorción (117) donde por medio de una resina iónica se realiza la estabilización de subproductos, a una presión de trabajo que va de 0.5 a 1 atm y a una temperatura de operación de entre 50 a 110 °C, en una modalidad preferida la estabilización opera a 0.9 atm y 70°C.

25

I) Contener el etanol y subproductos generados con control de presión y temperatura en un tanque de almacenamiento (118).

La planta (100) para producir etanol a partir de vinaza enriquecida con celulosa separada de envases multicapas, comprende:

a) Al menos una banda de separación (101), en la cual se realiza la selección y separación del empaque multicapa de los demás residuos sólidos, por medio de diferencia de masa (peso) y densidad, a través de un sistema de refracción de luz (sensor de haz de luz);

5

b) Al menos un tanque de almacenamiento de vinazas (102), que puede presentar un control de temperatura (40° a 100°C) y un sistema de aireación, para favorecer el crecimiento de los consorcios microbianos que promueven la asimilación de la materia orgánica, además de evitar la formación de consorcios anaerobios.

10

c) Al menos un tanque tolva (103) con mecanismo de agitación-mezclado con velocidades de mezcla entre 400-1200 rpm, preferentemente 800 rpm y control de temperatura entre 50 a 90 °C para separar los distintos materiales de empaques multicapa.

15

d) Al menos una lavadora de aspas (104) concebida para recuperar la vinaza con celulosa en suspensión. El polietileno y el aluminio son separados por densidades y gravedad.

20

e) Al menos un separador tipo ciclón (105), donde se separan los materiales por densidad del material, obteniendo material con cantidad mínima de líquido.

f) Un sistema de filtros de mangas (106) o filtro prensa donde se recupera y deshidrata el material de celulosa.

25

30

g) Al menos un fermentador (111) donde la vinaza enriquecida con celulosa producto de la separación de capas de los envases multicapa y enriquecedores de celulosa; dicha fermentación se lleva acabo a una temperatura entre 20 - 45 °C y con un tiempo de residente de entre 12 horas a 1 mes.

El fermentador (111) es un recipiente abierto o cerrado a presión atmosférica con condiciones controladas de temperatura entre 20-45°C y tiempo de residencia de 12 h- 1 mes, en donde la fermentación de las vinazas con celulosa procedente en de la separación de envases multicapas, complementado con celulosa de otros materiales en una relación 1:5 %p/p (cartón Kraft, cartón de huevo y cartón revuelto).

5

10

15

20

- h) Al menos un sedimentador por gravedad (112) para obtener el clarificado de la fermentación, este proceso se realiza en un intervalo de tiempo de 1 a 60 min, preferentemente 15 min;
- i) Al menos una columna de destilación por lotes o en batch (113) para recuperar el etanol de la mezcla etanol-agua, esto para el desplazamiento del azeótropo presente, a condiciones de entre 75 a 95 °C y 1 atm de presión.
- j) Al menos una columna de separación multietapas (114), con control de temperatura donde se realiza la destilación, constituida por un reboiler (115) y un condensador (116), y se separa los volátiles en el domo de la columna; los pesados en el fondo de la misma. Diseñado para trabajar a una presión entre 0.5 a 1 atm y temperaturas entre 50 a 110°C.
- k) Al menos una resina iónica (117) con control de presión de 0.5 a 1 atm y una temperatura de 50 a 110°C para sorción de contaminantes, cual esta térmicamente acoplado en las etapas iniciales del domo de la columna de destilación.
- I) Al menos un tanque de almacenamiento (118) del etanol y subproductos generados con control de presión y temperatura.
- En una realización preferente de la invención, la planta de separación de envases multicapa (100), además puede tener un tanque de agua (107) que

abastece un intercambiador solar (108), el cual a su vez está en comunicación fluida con el tanque de almacenamiento de vinaza (102), el tanque tolva (103) con mecanismo de agitación-mezclado y con la lavadora de aspas (104).

Además, el tanque tolva (103) con mecanismo de agitación-mezclado está en comunicación con una criba (109) para separación de materiales, la cual a su vez se comunica con una fosa de recuperación de vinaza (110).

MEJOR MÉTODO PARA LLEVAR A CABO LA INVENCIÓN

10

5

Los ejemplos que se presentan a continuación tienen como finalidad ilustrar la invención, de ninguna manera pretenden limitar, ni se debe interpretar de forma limitativa, ya que un técnico en la materia entenderá que hay múltiples variantes que caen dentro del alcance de protección de la presente invención.

15

20

Separación de los materiales de los empaques multicapa utilizando vinazas.

En los ejemplos que se ilustran a continuación se evaluaron diferentes vinazas en la separación de los distintos materiales que conforman a los envases multicapas del sector alimentario, para lo cual se consideraron las siguientes variables del método:

Condiciones y/o parámetros experimentales.

La experimentación se realizó seleccionando las variables de proceso, obtenidas de la simulación en Aspen Plus V12.0.

- Velocidad de agitación: 800 rpm
- Tiempo de residencia en el reactor batch: 3 hrs.
- 30 Temperatura de reacción: 70 °C
 - Relación vinaza/empaque multicapa: 1:100 w/v.

- Potencial de Hidrógeno: ácido (3.5-4.7)

Vinazas.

Para los distintos ejemplos se utilizaron muestras de vinaza de mezcal, tequila 5 y de alcohol etílico.

El procedimiento para evaluar la separación de los distintos materiales que conforman a los envases multicapas se presenta a continuación:

La vinaza se puede obtener en dos fuentes diferentes de la producción específica, una de estas fuentes proviene de la fosa de confinamiento del residuo final, mientras que la segunda fuente proviene las colas de la destilación. Por esta razón, en los ensayos que muestran a continuación se utilizaron ambos tipos de vinazas.

A continuación, se muestran los resultados de las propiedades físicas como densidad y viscosidad de las distintas vinazas utilizadas en la presente invención.

Tabla 6. Resultados de densidad y viscosidad.

Tipo de Vinaza	Densidad (kg/m³)	Viscosidad (Pa·m²/s)	Tamaño de partícula (micrones)	рН
Industria de Tequila	1017.5	715.875	947	3.95
Industria de Mezcal	1002.3	707.977	948	4
Industria de la producción de alcohol etílico (melaza)	1029.5	699.876	956	3.5

20

10

15

Se observa que las viscosidades y densidades, se encuentran dentro de intervalos semejantes entre los diferentes tipos de vinazas usadas para la separación de los empaques multicapa.

Adicionalmente, se observó que las vinazas presentan un valor de pH en un intervalo ácido.

Ejemplo 1: Separación de materiales de envases multicapas con vinaza del tequila.

5

15

20

25

El proceso de separación de materiales de envases multicapas se llevó a cabo como se indicó previamente, utilizando las condiciones o parámetros indicados en la sección previa:

En la figura 2, se muestra de forma esquemática la etapa de separación del empaque multicapa, así como los productos de la separación.

Los resultados de este ejemplo se muestran en la tabla 7, en esta se observa que para una relación 1:100 w/v de peso de envase multicapa (composición inicial de 75% celulosa, 20% polietileno de alta y baja densidad y 5% aluminio) y volumen de vinaza (fosa y columna), se observa que existe una separación aproximada de 73.25 ±0.05% de celulosa, 18.05 ±0.05% polietileno (alta y baja densidad) y 1.85 ±0.05% de aluminio.

Tabla 7. Masa separada de los distintos materiales mediante el método de la presente invención utilizando las vinazas del **tequila**, a una relación de 1:100 w/v.

Vinaza de tequila	% Celulosa	% PE (alta densidad)	% PE (baja densidad)	% Aluminio	% total
Composición material a reciclar	75	2	0	5	100
Vinaza (columna)	73.1 ± 0.05	18.2 ± 0.05	1.8 ± 0.05	5 ± 0.05	98.1
Vinaza (fosa)	73.4 ± 0.05	17.9 ± 0.05	1.9 ± 0.05	5 ± 0.05	98.2

Como se puede observar, a partir de los resultados obtenidos, con la presente invención se obtienen muy altos rendimientos (>98%) de los materiales recuperados. Aún más, los resultados muestran que se obtienen eficiencias similares al utilizar las vinazas provenientes de los dos "segmentos" diferentes (columna y cola) del proceso

de obtención del tequila, esto sugiere que a pesar de las posibles diferencias que lleguen a existir entre estos dos "segmentos" de la vinaza, ambos son apropiados para la presente invención.

5 <u>Ejemplo 2</u>: Separación de materiales de envases multicapas con vinaza del mezcal.

El proceso de separación de materiales de envases multicapas se llevó a cabo como se indicó previamente, utilizando las condiciones o parámetros indicados en la sección previa:

En la figura 2, se muestra de forma esquemática la etapa de separación del empaque multicapa, así como los productos de la separación.

10

15

20

25

Los resultados de este ejemplo se muestran en la tabla 8. Para una relación 1:100 w/v de peso de envase multicapa (composición inicial de 75% celulosa, 20% polietileno (PE) alta y baja densidad y 5% aluminio) y volumen de vinaza (fosa y columna), se observa que existe una separación de 72.7 ±0.05 % celulosa, 19.9 ±0.05 % polietileno (PE) alta y baja densidad (18.5 +1.4 %) y 5 ±0.05% aluminio.

Tabla 8. Masa separada de los distintos materiales mediante el método de la presente invención utilizando las vinazas del **mezcal**, a una relación de 1:100 w/v.

Vinaza de Mezcal	% Celulosa	% PE (alta densidad)	% PE (baja densidad)	% Aluminio	% total
Composición material a reciclar	75	2	0	5	100
Vinaza (columna)	71.8 ± 0.05	18.6 ± 0.05	1.3 ± 0.05	5 ± 0.05	96.7
Vinaza (fosa)	72.7 ± 0.05	18.5 ± 0.05	1.4 ± 0.05	5 ± 0.05	97.6

Como se puede observar, a partir de los resultados obtenidos, con la presente invención se obtienen muy altos rendimientos (>96%) de los materiales recuperados. Aún más, los resultados muestran que se obtienen eficiencias similares al utilizar las vinazas provenientes de los dos "segmentos" diferentes (columna y cola) del proceso de obtención del mezcal, esto sugiere que a pesar de las posibles diferencias que

lleguen a existir entre estos dos "segmentos" de la vinaza, ambos son apropiados para la presente invención.

<u>Ejemplo 3</u>: Separación de materiales de envases multicapas con vinaza de melaza de la caña de azúcar.

5

10

25

El proceso de separación de materiales de envases multicapas se llevó a cabo como se indicó previamente, utilizando las condiciones o parámetros de indicados en la sección previa:

En la figura 2, se muestra de forma esquemática la etapa de separación del empaque multicapa, así como los productos de la separación.

Los resultados de este ejemplo se muestran en la tabla 9. Para una relación 1:100 w/v de peso de envase multicapa (composición inicial de 75% celulosa, 20% aluminio y 5% polietileno de alta y baja densidad) y volumen de vinaza (fosa y columna), se observa que existe una separación de 74.55 ±0.05% celulosa, 19.9% polietileno (PE) alta y baja densidad (17.8 + 2.1%) y 5 ± 0.05 de aluminio.

Tabla 9. Masa separada de los distintos materiales mediante el método de la presente invención utilizando las vinazas de alcohol etílico, a una relación de 1:100 w/v.

Vinaza de caña de azúcar	% Celulosa	% PE (alta densidad)	% PE (baja densidad)	% Aluminio	% total
Composición material a reciclar	75	2	0	5	100
Vinaza (columna)	74.5 ± 0.05	17.8 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.4
Vinaza (fosa)	74.6 ± 0.05	17.9 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.6

Como se puede observar, a partir de los resultados obtenidos, con la presente invención se obtienen muy altos rendimientos (>99%) de los materiales recuperados.

Aún más, los resultados muestran que se obtienen eficiencias similares al utilizar las vinazas provenientes de los dos "segmentos" diferentes (columna y cola) del proceso de obtención del mezcal, esto sugiere que a pesar de las posibles diferencias que lleguen a existir entre estos dos "segmentos" de la vinaza, ambos son apropiados para la presente invención.

5

10

15

Como el técnico en la materia podrá corroborar, la aplicación novedosa de vinazas en la industria del reciclado de material multicapa es altamente eficiente, lo que sustenta la actividad inventiva de la presente invención. Se analizaron tres vinazas diferentes y todas ellas mostraron ser apropiadas para la presente invención, presentando eficiencias mayores al 96%, en particular la vinaza derivada de la melaza de la caña de azúcar fue la que mostró el mejor rendimiento total, logrando recuperar del 99.4 al 99.6 del material de los envases multicapas, seguida de la vinaza del tequila, quien logró recuperar >98% y, finalmente, la vinaza del mezcal que presentó un rendimiento >96%.

Tabla 10. Resultados de la eficiencia de las distintas vinazas en la recuperación de los materiales de los envases multicapa.

Tipo de Vinaza	% Celulosa	% (PE) baja densidad	% PE alta densidad	% Aluminio	% total
Composición del material a reciclar	75	20)	5	100
Industria de Tequila	73.1 ± 0.05	18.2 ± 0.05	1.8 ± 0.05	5 ± 0.05	98.1
industria de requiia	73.4 ± 0.05	17.9 ± 0.05	1.9 ± 0.05	5 ± 0.05	98.2
Industria de Mezcal	71.8 ± 0.05	18.6 ± 0.05	1.3 ± 0.05	5 ± 0.05	96.7
industria de Mezcai	72.7 ± 0.05	18.5 ± 0.05	1.4 ± 0.05	5 ± 0.05	97.6
Industria de Alcohol	74.5 ± 0.05	17.8 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.4
etílico	74.6 ± 0.05	17.9 ± 0.05	2.1 ± 0.05	5 ± 0.05	99.6

Así mismo, a partir de los resultados mostrados en la tabla 10, al sumar los valores de PE (de baja y alta densidad), y expresar los valores obtenidos en porcentaje, se observa aún más claramente que las tres vinazas presentan una eficiencia de prácticamente el **100**% para recuperar los materiales de PE y aluminio, presentándose las diferencias en el porcentaje de celulosa recuperado.

Tabla 11. Resultados en porcentaje de la eficiencia de recuperación de los distintos materiales obtenidos con las distintas vinazas.

5

10

15

20

Tipo de Vinaza	% Celulosa	% (PE) baja y alta densidad	% Aluminio
% del material recuperado del envase multicapa	100	100	100
Industria de Tequila	97.47	100	100
industria de Tequila	97.87	99	100
Industria de Mezcal	95.73	99.5	100
ilidustria de Mezcai	96.93	99.5	100
Industria de Alcohol etílico	99.33	99.5	100
industria de Alconoi etilico	99.47	100	100

Sin pretender limitarse a ningún mecanismo ni teoría, los inventores del presente desarrollo consideran que las variables que más incidencia tiene en el proceso de separación de las capas del empaque son la relación de vinaza/empaque multicapa y el pH de las vinazas, mientras que la temperatura, el régimen de mezcla y tiempo de residencia en el reactor podrían presentar una incidencia media.

Ejemplo 4: Pruebas experimentales de la obtención de etanol

A continuación, se presenta de forma general el procedimiento para la obtención de etanol a partir del residuo líquido del proceso de separación de los distintos materiales que conforman a los empaques multicapa, utilizando vinaza (mezcalera, tequilera, alcohol etílico u otra), este residuo o fracción líquida corresponde a la vinaza que contiene a la celulosa procedente de los empaques multicapa. Las vinazas, agua residual derivada del proceso de destilación del mosto fermentado proveniente de la industria mezcalera, tequilera, del alcohol etílico u

otros, contiene un consorcio microbiano mayoritario autóctono y, por lo tanto, característico (tabla 12, elaboración propia), este coadyuva a la fermentación del mosto a partir de vinaza enriquecida con celulosa separada de envases multicapas y otros. Con base en lo anterior, no se requiere la adición de levaduras u otros para la iniciación de la fermentación alcohólica.

En la Tabla 12 Consorcio mayoritario - autóctono de las vinazas determinado por espectrometría de masas MALDI-TOF (elaboración propia).

5

10

20

Consorcio microbiano mayoritario-autóctono	Concentración (mg/L)
Wickerhamomyces anomalus (A++)	1.979
Lactobacillus paracasei (B+)	1.974
Bacillus subtilis (B+)	1.877

La metodología de obtención del etanol, a partir del residuo o fracción líquida (vinaza-celulosa) que se obtiene del proceso de separación de las capas presentes en los empaques multicapa, se presenta a continuación:

a) Colocar el residuo o fracción líquida (vinaza-celulosa) en un fermentador
 apropiado para tal fin.

El técnico en la materia podrá imaginar que dicho fermentador puede presentar diversos aditamentos para controlar y/o monitorear diversos parámetros tales como la temperatura, nivel de oxígeno, de bióxido de carbono, entre muchos otros. Así mismo, dicho reactor puede presentar una o más llaves, válvulas o conexiones para permitir adicionar suplementos, o controlar la entrada o salida de gases. Aún más, el reactor puede estar diseñado para permitir que la fermentación se lleve a cabo en ausencia de luz.

25 b) Fermentar durante un periodo de al menos 24 hrs, a una temperatura de entre 25 a 35°C, preferentemente a una temperatura de aproximadamente 30°C.

c) Clarificar mediante sedimentación por gravedad (112) y llevar a una columna de destilación por lotes (batch) (113) y posteriormente una columna de separación (114) donde se realiza la destilación multietapas según la calidad del etanol comercial requerido según las NOM-142-SSA1/SCFI-2014 para fermentados y no fermentados y de la NOM-016-CRE-2018 (ASTM-D5501) para etanol anhidro, a una presión de operación de 0.5 a 1 atm y una temperatura de 50 a 110°C, en una modalidad preferida la destilación opera a 0.9 atm y 75°C.

La columna en "batch" tiene la finalidad de la obtención de un destilado en el domo de la columna (etanol) y un fondo (colas). Es importante resaltar que si la calidad del producto de etanol así lo requiere, el primer destilado (columna de destilación por lotes (batch) 113) pasa a un proceso separación multietapas a través de una columna de separación (114) o platos perforados a una presión constante de 0.95 atm entre una temperatura de 60 a 90°C; cabe resaltar que la temperatura de la columna en las etapas intermedias se encuentra es entre 70 a 90 °C, preferentemente a 82°C y, en las etapas superiores (condensador) entre una temperatura de 70 a 80°C, preferentemente a 76°C, en las etapas inferiores considerando el "reboiler" se considera a una temperatura de entre 60 a 95°C, preferentemente a 85°C; se debe considerar que la alimentación del destilado a rectificar preferentemente se realiza en la etapa intermedia de la columna de destilación.

A continuación (ver tabla 13, 14 y 15), se muestran los resultados del etanol obtenido mediante el uso de envases multicapa y de otros tipos de residuos sólidos urbanos con presencia de celulosa (cartón kraft, cartón de huevo y revuelto) a una relación másica de 1: 5 de tetrapack : otros; estas pruebas se corrieron realizó mediante el mismo procedimiento al ya descrito, lo que implica que las variables de proceso consideradas son las mismas usadas durante todo el proceso, donde la variable temperatura y proporción de flujo de materia prima son las de mayor incidencia en el rendimiento de la producción de etanol.

Por medio de este proceso se valoriza un residuo sólido urbano (envase multicapa, cartón Karaft, Cartón de Huevo, Cartón revuelto y otros), un residuo industrial liquido (vinaza) y se obtiene como subproductos con valor comercial.

Tabla 13. Generación etanol a partir de una relación másica de envases multicapa y diferentes residuos sólidos en destilación "Batch"

DETECCIÓN	DETERMINA IMPUREZAS I		REFERENTE		
Tip Residuo líquido (1w :100 v)	Tiempo de fermentación (h)	Volumen a destilar (mL)	Volumen de destilado (mL)	Porcentaje de alcohol en el destilado (Fracción másica x)	
Celulosa de envases					
multicapa + Vinaza de	24	500	163	0.78	
Mezcal					
Celulosa de envases					
multicapa +Vinaza de	24	500	160	0.81	
Tequila					
Celulosa de envases					
multicapa +	24	500	180	0.85	
Vinaza de Alcohol Etílico					
Celulosa de envases					
multicapa enriquecida					
con Cartón Kraft	24	500	180	0.86	
a una relación 1: 5 y					
Vinaza de Alcohol Etílico					
Celulosa de envases					
multicapa enriquecida					
con Cartón de Huevo	24	500	178	0.83	
a una relación 1: 5 y					
Vinaza de Alcohol Etílico					
Celulosa de envases					
multicapa enriquecida					
con Cartón Revuelto	24	500	179	0.84	
(mixto)	<u> </u>	500	179	U.0 4	
a una relación 1: 5 y					
Vinaza de Alcohol Etílico					

De los resultados mostrados en la tabla previa, se puede concluir que el rendimiento obtenido a partir de la fracción liquida Vinaza-celulosa es prácticamente igual al rendimiento cuando la fracción liquida Vinaza-celulosa se enriquece con otro residuo rico en celulosa. Así mismo, de dichos resultados se puede concluir que

cualquiera de las vinazas es apropiada para utilizarse en este proceso para la producción de bioetanol. Además, mediante el proceso de fermentación y destilación, descrito en la presente invención, se obtiene etanol con un rendimiento que va entre el 78% -80%, lo cual lo hace altamente competitivo.

5

<u>Ejemplos 5 y 6</u>: Caracterización de etanol obtenido mediante el proceso de la invención.

10

15

El etanol obtenido mediante el proceso descrito previamente se sometió a una caracterización por cromatografía de gases en un Agilent 7890B GC con una columna DB-WA2 (30mx0.45 mm x 0.83 micrómetros) en donde se usa fase móvil o de arrastre es nitrógeno. El grado alcohólico y densidad se realizó en un equipo Metter Toledo 5000 y el pH se midió con un potenciómetro Thermometer 1500 con un electrodo de platino, donde se determinaron las impurezas presentes según los parámetros referidos en normas de referencia NOM-142-SSA1/SCFI-2014 para fermentados y no fermentados y de la NOM-016-CRE-2018 (ASTM-D5501) para etanol anhidro, respectivamente. Los resultados obtenidos se muestran en la tabla 14 y 15.

20

Tabla 14. Generación etanol a partir de celulosa de envases multicapa y/o de celulosa de diferentes residuos sólidos a una relación másica 1:5 de en destilación "Batch".

	Vinaza con Celulosa a partir de una relación másica de vinaza : celulosa de residuo (1w :100 v)				REFERENTE NOM-142- NOM-016-CRE-			
DETECCIÓN Parámetro	Envase		Envase Multicapa	Envase Multicapa y Cartón de Huevo 1:5	SSA1/SCFI-2014 No Fermentados	SSA1/SCFI-2014 Fermentados	2018 Bioetanol/Etanol anhidro	
	Multicapa y Cartón Kraft 1:5	Envase Multicapa	y Cartón Revuelto 1:5		ppm	ppm	ppm	
Acetaldehído	0.00	7.8619	0.00	0.00	40			
Acetato de etilo	0.00	3.4651	0.00	0.00				
Sec butanol	0.00	0.00	0.00	0.00				
Iso butanol	0.00	0.00	0.00	0.00				
n butanol	0.00	0.00	0.00	0.00				
Iso amílico	0.00	0.00	0.00	8.1088				
n amílico	0.00	0.00	0.00	0.00				
Metanol	5.2169	10.3299	7.257	6.2699	300	300	2.97	
n propanol	3.4771		1.3703	0.00				
lactato de etilo	4.3369	4.0538	2.7728	4.0939				
Furfural	5.0476	2.5188	6.3361	5.2765	5			
Alcoholes lineales C5-								
C8	N/D	N/D	N/D	N/D	500			
% de Alcohol	45	43	46	44.5				
Tiempo de Oxidación								
(KMnO ₄) (segundos)	2	3	1	1				
Acidez (pH)	5.2	5.1	5.5	5.3				
Porcentaje de agua	55	57	54	55.5				
Densidad (g/cm³) *	0.801	0.887	0.823	0.867				

N/D. No Detectable

5

10

Tabla 15. Generación etanol a partir de celulosa de envases multicapa y/o de celulosa de diferentes residuos sólidos a una relación másica 1:5 de en destilación "Batch" y destilación multi-etapas.

		Vinaza con Celulosa a partir de una relación másica de vinaza : celulosa de residuo (1w :100 v)				REFERENTE			
20	DETECCIÓN Parámetro					NOM-142- SSA1/SCFI-2014	NOM-142- SSA1/SCFI-2014	NOM-016-CRE- 2018	
		Envase Multicapa		Envase Multicapa	Envase Multicapa y Cartón de Huevo 1:5	No Fermentados	Fermentados	Bioetanol/Etanol anhidro	
		y Cartón Kraft 1:5	Envase Multicapa	y Cartón Revuelto 1:5		ppm	ppm	ppm	
	Acetaldehído	4.931	4,3401	2.4532	2,3267	40			
25	Acetato de etilo	0.00	0.00	0.00	0.00				
	Sec butanol	0.00	0.00	0.00	0.00				
	Iso butanol	0.00	0.00	0.00	0.0651				
	n butanol	0.00	0.00	0.00	0.00				
	Iso amílico	0.0343	0.00	0.00	0.0971				
	n amílico	0.00	0.00	0.00	0.00				
	Metanol	2.9804	0.8720	2.157	2.7027	300	300	2.97	
	n propanol	0.1973	4.0653	0.1370	5.2802				
	lactato de etilo	0.00	0.00	0.00	0.00				
	Furfural	0.4667	0.3044	0.0872	0.0851	5			
	Alcoholes lineales C5-								
	C8	N/D	N/D	N/D	N/D	500			
20	% de Alcohol	73	75	74	75				
	Tiempo de Oxidación								
	(KMnO ₄) (segundos)	1	1.5	2	1				
	Acidez (pH)	8.1	8.4	8.2	8.3				
30	Porcentaje de agua	27	25	26	25				
	Densidad (g/cm ³) *	0.7991	0.7956	0.7945	0.7958				

N/D. No Detectable

Los resultados mostrados en las tablas 14 y 15, indican claramente que el etanol obtenido mediante la presente invención presenta un total de impurezas en general menor muy por debajo de la norma correspondiente de fermentados, no fermentados según la NOM-142-SSA1/SCFI-2014 y de la NOM-016-CRE-2018 (ASTM-D5501) para etanol anhidro.

Mediante la presente invención se ha logrado obtener productor de un alto valor agregado a partir de dos residuos que son muy frecuentes, abundantes y altamente contaminantes, como lo son los envases multicapas y las vinazas. Como el técnico en la materia podrá corroborar, esta invención reporta múltiples beneficios en distintas áreas tecnológicas. Permite reutilizar, y can ello revalorizar, los desechos de envases multicapa y los desechos de la industria de la producción de alcohol, es decir, las vinazas, con lo cual se tienen un gran impacto medioambiental benéfico. También, permite la obtención de bioetanol, con un alto estándar de calidad, a partir de productos de desecho, con lo cual se evita que la industrial de la producción de bioetanol consuma los granos agrícolas, como maíz, sorgo, etc., evitando que se incrementen los costos de dichos insumos. Adicionalmente, también se revalorizan el polietileno y el aluminio, para su reutilización, con los consecuentes beneficios medioambientales y económicos.

No obstante que la anterior descripción se realizó tomando en cuenta las modalidades preferidas del invento, deberá tenerse en cuenta por aquellos expertos en el ramo, que cualquier modificación de forma y detalle estará comprendida dentro del espíritu y el alcance del presente invento. Los términos en los que se ha redactado esta memoria, deberán ser tomados siempre en sentido amplio y no limitativo. Los materiales, forma y descripción de los elementos, serán susceptibles de variación siempre y cuando ello no suponga una alteración de la característica esencial del modelo.

REFERENCIAS

5

- Ecoadmin. (2013). Cartón. Ecologíahoy (https://www.ecologiahoy.com/carton)
- Barrera, German. (16 de octubre 2017). La vinaza como fuente de ingresos. Colombia. Linkedin. Recuperado de: https://www.linkedin.com/pulse/la-vinaza-como-fuente-de-ingresos-german-barrera/
- Congreso de la Unión (2018) Ley General para la Prevención y Gestión de los Residuos.

Diario Oficial de la Federación.

- 10 Ecoticias. (5 de agosto de 2009). El impacto ambiental de la elaboración de tequila. Ecoticias. Recuperado de:
 - https://www.ecoticias.com/eco-america/16161/El-impacto-ambiental-de-la-elaboracion-de-tequila-apenas-empieza-a-ser-asumido-por-la-industria-medio-ambiente-medioambiental-ambiental
- El economista. (22 de julio de 2019). Industria del tequila y el mezcal es la segunda actividad más importante en México. El economista. Recuperado de: https://www.eleconomista.com.mx/empresas/Industria-del-tequila-y-el-mezcal-es-la-segunda-actividad-economica-mas-importante-de-Mexico-Inegi-20190722-0073.html
- 20 Giusti, L. (2009) A review of waste management practices and their impact on human health. Waste Management 29: 2227- 2239
 - Ibarra, Roberto., león, Leandro, (2019). Caracterización físico-química de vinazas de destilerías. Revista Cubana de Química. Vol.2, 246-257.
 - INEGI (2019) INEGI. México. Recuperado de:
- 25 <u>https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2019/OtrTemEcon/industriatequila.pdf</u>
 - Informador. (4 de enero de 2011). Quejas contra vinaza de tequileras en Zapotlanejo. Informador. Recuperado de: https://www.informador.mx/Jalisco/Quejas-contra-vinazas-de-tequileras-en-Zapotlanejo-20110104-0102.html

Regadío, M., A.I. Ruiz, M. Rodríguez-Rastrero, J. Cuevas. (2015) A containment and attenuating layers: An affordable strategy that preserves soil and water from landfill pollution.

Waste Management 46: 408-419

10

15

20

25

5 Secretaria de Medio Ambiente y Recursos Naturales (2015) Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales. Indicadores Clave, de Desempeño Ambiental y de Crecimiento Verde. Edición 2015.

La gaceta. (9 de julio de 2018). Miden el impacto de regar campos con vinaza. La gaceta. Recuperado de:

https://www.lagaceta.com.ar/nota/773368/actualidad/miden-impacto-regar-campos-vinaza.html

Lopez, M. G., Mancilla-Margalli, N. A., & Mendoza-Diaz, G. (2003). Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry, 51 (27), 7835-7840.

Meléndez, Violeta. (29 de julio de 2016). Tequileras consumen 5 mil millones de litros de agua. El diario NTR.

Recuperado de: https://www.ntrguadalajara.com/post.php?id nota=46596

Mendoza, Abisaí. (18 de febreo de 2012). México, país de magueyes. La jornada del campo. Recuperado de: https://www.jornada.com.mx/2012/02/18/cam-pais.html
Ramírez, miriam. (13 de mayo de 2017). México, septimo lugar en bebidas alcoholicas. Milenio. Recuperado de: https://www.milenio.com/negocios/mexico-septimo-lugar-en-bebidas-alcoholicas

Sanchez, enrique. (17 de junio del 2014), méxico a la conquista de nuevos mercados con el tequila: EPN. Excelsior. Recuperado de: https://www.excelsior.com.mx/nacional/2014/06/17/965574#imagen-1

Saucedo-Luna, J., Castro-Montoya, A. J., Rico, J. L., & Campos-García, J. (2010).

Optimization of acid hydrolysis of bagasse from Agave tequilana Weber.

Revista Mexicana de Ingeniería Química, 9(1), 91-97.

30 Secretaría de Energía, (2019) Atlas de Biomasa, (consultado el 29 de septiembre de 2019 en https://dgel.energia.gob.mx/anbio/)

- Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2016) "Vinazas alternativas de uso", Nota Informativa sobre innovaciones en materia de productividad del sector
- Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2017),

 Agave y Mezcal Tequilero, (Consultado el 25 de Septiembre de 2019 en https://www.gob.mx/cms/uploads/attachment/file/257066/Potencial-Agave_Tequilero_y_Mezcalero.pdf)
 - SEMARNAT. (2015). Informe de la situación de medio ambiente en México 2015. SEMARNAT. Recuperado de
- 10 https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.
 pdf
 - Servin Jungdorf Carl Anthony, Mantilla Morales Gabriela, Hernández Cruz Norma (2017) El Precio el Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua (IMTA)
- 15 Canepa-Becerril, M.(2017). Impacto ambiental de envases multicapa, Universidad Nacional Autónoma de México, Tesis de licenciatura, 97 p.
 - Tecnología del Plástico. (2017). Reciclaje de Tetra Pack abre opciones de negocio en plásticos. Tecnología del Plástico. Recuperado de: http://www.plastico.com/temas/Reciclaje-de-Tetra-Pak-abre-opciones-de-negocio-en-plasticos+122269
 - Rosa-López, J. de la R. (2018). Cuarto Informe de Labore. Organismo Operado de Servicio de Limpia, Puebla, Pue., 36 p.
 - Tetra Pack. (2019). Material para envasado para envases de catón Tetra Pack. Tetra Pack. Recuperado de https://www.tetrapak.com/mx/packaging/materials
- Valencia, Oscar Mauricio (2009). Diseño del relleno sanitario intermunicipal para los municipios de Atoyac de Álvarez- Benito Juárez y Técpan (tesis de maestría). Recuperado
 - http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2918/galindovalencia.pdf?sequence=1

REIVINDICACIONES

1.- Un método para la obtención de etanol caracterizado porque comprende las siguientes etapas:

5

15

20

- a) Mezclar una vinaza con material multicapa, mantener en agitación entre 400 a 1200 rpm, a una temperatura de entre 50°C a 90°C, durante un periodo de tiempo de entre 1 a 3 horas;
- b) Cribar la mezcla para separar la (i) fracción líquida que contiene a la vinaza con la celulosa disuelta y (ii) la fracción sólida que contiene polietileno y aluminio;
 - c) Transferir la fracción líquida a un fermentador apropiado para tal fin;
 - d) Fermentar durante un periodo de al menos 24 hrs, a una temperatura de entre 25 a 35°C.
 - e) Sedimentar la vinaza fermentada, preferentemente en un sedimentador de gravedad (112) para retirar los sólidos sedimentables y obtener el clarificado.
 - f) Conducir el clarificado a al menos una columna de destilación por lotes (batch) (113) para recuperar el etanol de dicha mezcla a condiciones de entre 75 a 95 °C y 1 atm de presión;
 - g) Conducir la mezcla etanol-agua obtenido a una columna de separación (114) donde se realiza la destilación en una columna multi-etapas.
- h) Almacenar el etanol y subproductos en un tanque de almacenamiento (118) con control de temperatura y presión.

- 2.- El método para la obtención de etanol de conformidad con la reivindicación previa caracterizado además porque el material multicapa comprende una capa de cartón (celulosa), una capa de polietileno y una capa de aluminio.
- 3.- El método para la obtención de bioetanol de conformidad con cualquiera de las reivindicaciones 1 a 2 caracterizado además porque las vinazas se seleccionan de entre vinazas de tequila, vinazas de mezcal, vinazas de la producción de alcohol etílico o cualquier combinación de las mismas.
- 4.- El método para la obtención de etanol de conformidad con cualquiera de las reivindicaciones previas caracterizado además porque la mezcla de material multicapa con vinaza se encuentra en una proporción de entre 1:1 a 1:1000 (p/v), preferentemente de entre 1:10 a 1:100 (p/v).
- 5.- El método para la obtención de etanol de conformidad con cualquiera de las reivindicaciones previas caracterizado además porque la vinaza y los envases multicapa opcionalmente pueden ser enriquecidos con cartón Kraft, de huevo o papel revuelto en una relación másica de 1:5 de envases multicapa y los enriquecedores de celulosa.

25

- 6.- El método para la obtención de etanol de conformidad con la reivindicación 1 caracterizado además porque la vinaza que contiene a la celulosa además contiene consorcios de microorganismos que coadyuvan la fermentación alcohólica.
- 7.- El método para la obtención de etanol de conformidad con la reivindicación 1 caracterizado además porque los consorcios de microorganismos contenidos en la vinaza son seleccionados preferentemente del siguiente consorcio mayoritario autóctono Wickerhamomyces anomalus, Lactobacillus paracasei y Bacillus subtilis.

8.- El método para la obtención de etanol de conformidad con la reivindicación 1 caracterizado además porque el tiempo de retención en el sedimentador de gravedad (112) va de 1 a 60 minutos, preferentemente alrededor de 10 a 30 minutos y aún más preferentemente de 15 minutos.

5

10

9.- El método para la obtención de etanol de conformidad con la reivindicación 1 caracterizado además porque la destilación en la columna de separación (114) se realiza preferentemente a una presión constante de 0.95 atm y una temperatura entre 60 a 90°C; en donde en las etapas intermedias se realiza la alimentación a una temperatura entre 70 a 90 °C, en las etapas superiores (condensador) la temperatura se controlará entre 70 a 80°C y en las etapas inferiores considerando el "reboiler" se fijará a una temperatura de entre 60 a 95°C.

1

10.- El método para la obtención de etanol de conformidad con la reivindicación 1 caracterizado además porque a partir de la fracción sólida, de la etapa del inciso b), se separan los distintos materiales sólidos, por diferencia de su densidad, mediante un ciclón secador.

20

11.- El método para la obtención de etanol de conformidad con la reivindicación 1 caracterizado además porque comprende el paso opcional de remover contaminantes en un tanque de sorción (117) donde por medio de una resina iónica se realiza la estabilización de subproductos, a una presión de trabajo que va de 0.5 a 1 atm y a una temperatura de operación de entre 50 a 110 °C, preferentemente la estabilización opera a 0.9 atm y 70°C;

25

12.- Una planta para la obtención de etanol (100), caracterizada porque comprende:

30

 a) Al menos una banda de separación (101), en la cual se realiza la selección y separación del empaque multicapa de los demás residuos sólidos, por medio de diferencia de masa (peso) y densidad;

- b) Al menos un tanque de almacenamiento de vinazas (102);
- c) Al menos un tanque tolva (103) para separar los distintos materiales de empaques multicapa.

d) Al menos una lavadora de aspas (104) concebida para recuperar la vinaza con celulosa en suspensión;

10

- e) Al menos un separador tipo ciclón (105), donde se separan los materiales por densidad del material, obteniendo material con cantidad mínima de líquido;
- f) Un sistema de filtros de mangas (106) o filtro prensa donde se recupera y deshidrata el material de celulosa;

15

g) Al menos un fermentador (111) donde la vinaza enriquecida con celulosa producto de la separación de capas de los envases multicapa y enriquecedores de celulosa;

20

 h) Al menos un sedimentador por gravedad (112) para obtener el clarificado de la fermentación;

 i) Al menos una columna de separación por lotes o en batch (113) para recuperar el etanol de la mezcla etanol-agua;

25

j) Al menos una columna de separación multi-etapas (114) con control de temperatura donde se realiza la destilación constituida por un reboiler (115) y un condensador (116), y se separa los volátiles en el domo de la columna; los pesados en el fondo de la misma. Diseñado para trabajar a una presión entre 0.5 a 1 atm y temperaturas entre 50 a 110°C.

30

k) Al menos un tanque de almacenamiento (118) del etanol y subproductos generados con control de presión y temperatura.

- 13.- La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque la banda de separación (101) tiene un sistema de refracción de luz, preferentemente un sensor de haz de luz.
- 14.- La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque el tanque de almacenamiento de vinazas (102) puede presentar un control de temperatura configurado preferentemente a 40° a 100°C y un sistema de aireación, para favorecer el crecimiento de los consorcios microbianos que promueven la asimilación de la materia orgánica, además de evitar la formación de consorcios anaerobios.
 - **15.-** La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque el tanque tolva (103) tiene un mecanismo de agitación-mezclado con velocidades de mezcla entre 400-1200 rpm, preferentemente 800 rpm y control de temperatura entre 50 a 90 °C.
 - **16.-** La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque el fermentador (111) está configurado para trabajar a una temperatura entre 20 45 °C y con un tiempo de residente de entre 12 horas a 1 mes.
 - 17.- La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque el sedimentador por gravedad (112) está configurado para trabajar a un intervalo de tiempo de 1 a 60 min, preferentemente 15 min.
 - 18.- La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque comprende opcionalmente una resina iónica (117) configurada preferentemente con un control de presión de 0.5 a 1 atm y una temperatura de 50 a 110°C para sorción de contaminantes.

20

- **19.-** La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque la columna de destilación por lotes (batch) (113) está configurada para trabajar a condiciones de entre 75 a 95 °C y 1 atm de presión.
- 20.- La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque la columna de separación multi- etapas (114) tiene un control de temperatura, un reboiler (115) y un condensador (116), en donde se separan los volátiles en el domo de la columna; los pesados en el fondo de la misma; la cual trabaja a una presión entre 0.5 a 1 atm y temperaturas entre 50 a 110°C.
 - 21.- La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque la planta de separación de envases multicapa (100), además puede tener un tanque de agua (107) que abastece un intercambiador solar (108), el cual a su vez está en comunicación fluida con el tanque de almacenamiento de vinaza (102), el tanque tolva (103) con mecanismo de agitación-mezclado y con la lavadora de aspas (104).

22.- La planta para la obtención de etanol (100) de conformidad con la reivindicación 12, caracterizada porque el tanque tolva (103) con mecanismo de agitación-mezclado, preferentemente está en comunicación con una criba (109) para separación de materiales, la cual a su vez se comunica con una fosa de recuperación de vinaza (110).

RESUMEN

La presente invención ha logrado obtener un producto de alto valor agregado a partir de dos residuos que son muy frecuentes, abundantes y altamente contaminantes, como lo son los envases multicapas y las vinazas. En esta tesitura, esta invención reporta múltiples beneficios en distintas áreas tecnológicas; por una parte, permite reutilizar, y con ello revalorizar, los desechos de envases multicapa y los desechos de la industria de la producción de alcohol, es decir, las vinazas, con lo cual se tienen un gran impacto medioambiental benéfico. También, permite la obtención de bioetanol, con un alto estándar de calidad, a partir de productos de desecho, con lo cual se evita que la industrial de la producción de bioetanol consuma los granos agrícolas, como maíz, sorgo, etc., evitando que se incrementen los costos de dichos insumos. Adicionalmente, también se revalorizan el polietileno y el aluminio, para su reutilización, con los consecuentes beneficios medioambientales y económicos.

5

10

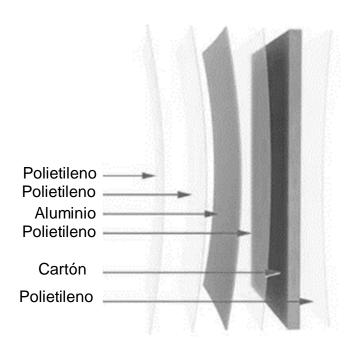


Fig. 1

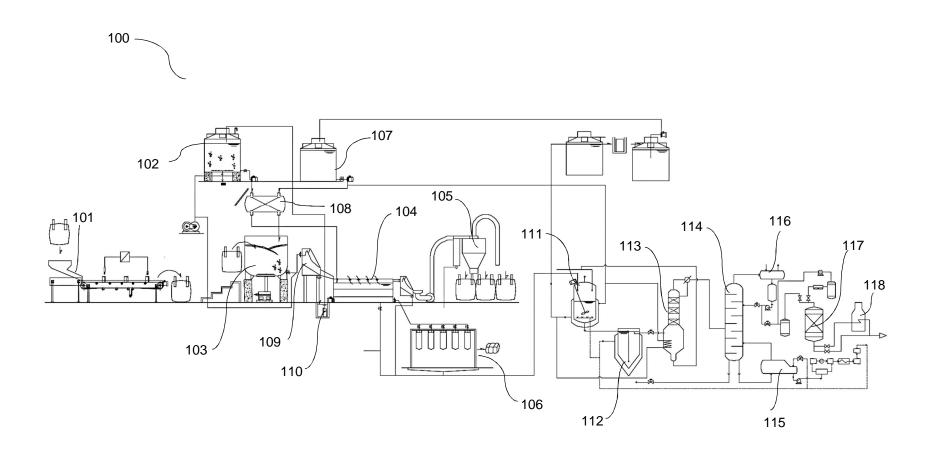


Fig. 2

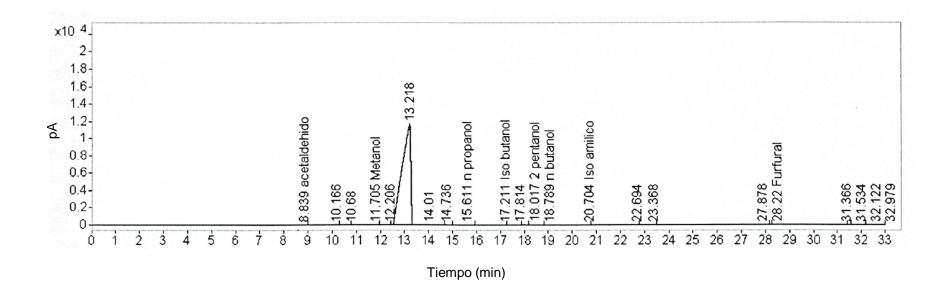


Fig. 3